Publications by authors named "Steven M Taffet"

Human variants in plakophilin-2 (PKP2) associate with most cases of familial arrhythmogenic cardiomyopathy (ACM). Recent studies show that PKP2 not only maintains intercellular coupling, but also regulates transcription of genes involved in Ca cycling and cardiac rhythm. ACM penetrance is low and it remains uncertain, which genetic and environmental modifiers are crucial for developing the cardiomyopathy.

View Article and Find Full Text PDF

Connexin43 and pannexin1 are found in immune cells. While gap junctional communication has been demonstrated between immune cells, hemichannels have been implicated in many cellular functions. Among the functions involved as being connexin dependent and pannexin dependent are cell migration, phagocytosis, antigen presentation, T-cell reactivity and B-cell responses.

View Article and Find Full Text PDF

BALB/c mice are predisposed to dystrophic cardiac calcinosis-the mineralization of cardiac tissues, especially the right ventricular epicardium. In previous reports, the disease appeared in aged animals and had an unknown etiology. In the current study, we report a substrain of BALB/c mice (BALB/cByJ) that develops disease early and with high frequency.

View Article and Find Full Text PDF

Macrophages that lack connexin43 (Cx43), a gap junction protein, have been reported to exhibit dramatic deficiencies in phagocytosis. In this study, we revisit these findings using well-characterized macrophage populations. Cx43 knockout (Cx43(-/-)) mice die soon after birth, making the harvest of macrophages from adult Cx43(-/-) mice problematic.

View Article and Find Full Text PDF

Objectives: This study sought to determine if serum markers for collagen I and III synthesis, the carboxyl terminal peptide from pro-collagen I (PICP) and the amino terminal peptide from pro-collagen III (PIIINP), correlate with left atrial (LA) fibrosis and post-operative atrial fibrillation (AF).

Background: AF after cardiac surgery is associated with adverse outcomes. We recently demonstrated that LA fibrosis is associated with post-operative AF in patients with no previous history of AF.

View Article and Find Full Text PDF

Rationale: The early description of the intercalated disc defined 3 structures, all of them involved in cell-cell communication: desmosomes, gap junctions, and adherens junctions. Current evidence demonstrates that molecules not involved in providing a physical continuum between cells also populate the intercalated disc. Key among them is the voltage-gated sodium channel complex.

View Article and Find Full Text PDF

Background: Gap junctions are potential targets for pharmacologic intervention. We previously developed a series of peptide sequences that prevent closure of connexin43 (Cx43) channels, bind to cardiac Cx43, and prevent acidification-induced uncoupling of cardiac gap junctions.

Objective: The purpose of this study was to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif.

View Article and Find Full Text PDF

Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.

View Article and Find Full Text PDF

Background: Phosphorylation is a key regulatory event in controlling the function of the cardiac gap junction protein connexin43 (Cx43). Three new phosphorylation sites (S296, S297, S306) have been identified on Cx43; two of these sites (S297 and S306) are dephosphorylated during ischemia. The functional significance of these new sites is currently unknown.

View Article and Find Full Text PDF

Rationale: Plakophilin-2 (PKP2) is an essential component of the cardiac desmosome. Recent data show that it interacts with other molecules of the intercalated disc. Separate studies show preferential localization of the voltage-gated sodium channel (Na(V)1.

View Article and Find Full Text PDF

Background: The development of atrial fibrillation (AF) after cardiac surgery is associated with adverse outcomes; however, the mechanism(s) that trigger and maintain AF in these patients are unknown.

Objective: The purpose of this study was to test our hypothesis that postoperative AF is maintained by high-frequency sources in the left atrium (LA) resulting from ion channel and structural features that differ from the right atrium (RA).

Methods: Forty-four patients with no previous history of AF who underwent cardiac surgery consented to LA and RA biopsies.

View Article and Find Full Text PDF

Connexin 43 (Cx43) is the predominant gap junction protein expressed in immune cells. Previous manuscripts have stated that gap junctions may play a role in antigen cross-presentation, dendritic cell maturation, T cell development, and regulatory T cell function. Many of these previous studies were performed in vitro.

View Article and Find Full Text PDF

Gap junction pharmacology is a nascent field. Previous studies have identified molecules that enhance intercellular communication, and may offer potential for innovative antiarrhythmic therapy. However, their specific molecular target(s) and mechanism(s) of action remain unknown.

View Article and Find Full Text PDF

Gap junctions provide a low-resistance pathway for cardiac electric propagation. The role of GJ regulation in arrhythmia is unclear, partly because of limited availability of pharmacological tools. Recently, we showed that a peptide called "RXP-E" binds to the carboxyl terminal of connexin43 and prevents chemically induced uncoupling in connexin43-expressing N2a cells.

View Article and Find Full Text PDF

In pathological conditions such as ischemic cardiomyopathy and heart failure, differentiation of fibroblasts into myofibroblasts may result in myocyte-fibroblast electrical coupling via gap junctions. We hypothesized that myofibroblast proliferation and increased heterocellular coupling significantly alter two-dimensional cardiac wave propagation and reentry dynamics. Co-cultures of myocytes and myofibroblasts from neonatal rat ventricles were optically mapped using a voltage-sensitive dye during pacing and sustained reentry.

View Article and Find Full Text PDF

Background: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is characterized by ventricular arrhythmias, sudden death, and fatty or fibrofatty replacement of right ventricular myocytes. Recent studies have noted an association between human ARVD/C and molecular remodeling of intercalated disc structures. However, progress has been constrained by limitations inherent to human studies.

View Article and Find Full Text PDF

Desmosomes and gap junctions are distinct structural components of the cardiac intercalated disc. Here, we asked whether the presence of plakophilin (PKP)2, a component of the desmosome, is essential for the proper function and distribution of the gap junction protein connexin (Cx)43. We used RNA silencing technology to decrease the expression of PKP2 in cardiac cells (ventricular myocytes, as well as epicardium-derived cells) obtained from neonatal rat hearts.

View Article and Find Full Text PDF

Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates.

View Article and Find Full Text PDF

Previous studies have shown that the gating kinetics of the slow component of the delayed rectifier K(+) current (I(Ks)) contribute to postrepolarization refractoriness in isolated cardiomyocytes. However, the impact of such kinetics on arrhythmogenesis remains unknown. We surmised that expression of I(Ks) in rat cardiomyocyte monolayers contributes to wavebreak formation and facilitates fibrillatory conduction by promoting postrepolarization refractoriness.

View Article and Find Full Text PDF

Background: Data on pH regulation of the cardiac potassium current I(K1) suggest species-dependent differences in the molecular composition of the underlying Kir2 channel proteins.

Objective: The purpose of this study was to test the hypothesis that the presence of the Kir2.3 isoform in heterotetrameric channels modifies channel sensitivity to pH.

View Article and Find Full Text PDF

Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119-144; referred to as "L2"). Structural analysis of L2 shows two alpha-helical domains, each with a histidine residue in its sequence (H126 and H142).

View Article and Find Full Text PDF

The carboxyl-terminal domain of connexin43 (Cx43CT) is involved in various intra- and intermolecular interactions that regulate gap junctions. Here, we used phage display to identify novel peptidic sequences that bind Cx43CT and modify Cx43 regulation. We found that Cx43CT binds preferentially to peptides containing a sequence RXP, where X represents any amino acid and R and P correspond to the amino acids arginine and proline, respectively.

View Article and Find Full Text PDF

Gap junction channels play an important role in cell growth control, secretion and embryonic development. Gap junctional communication and channel assembly can be regulated by protein-protein interaction with kinases and phosphatases. We have utilized tandem mass spectrometry (MS/MS) sequence analysis as a screen to identify proteins from cell lysates that interact with the C-terminal cytoplasmic region of connexin 43 (Cx43).

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine if the structural integrity of a region in the cytoplasmic loop (amino acids 119-144; region "L2") of connexin43 (Cx43) is necessary to maintain normal channel function.

Background: Cx43 is the most abundant gap junction protein in the heart. The ability of these channels to close under pathologic conditions such as ischemia may be a key substrate for cardiac arrhythmias.

View Article and Find Full Text PDF

Connexin43 (Cx43) channels reside in at least 3 states: closed, open, or residual. It is hypothesized that the residual state results from the interaction of an intracellular "gating element" with structures at the vestibule of the pore. Recently, we showed in vitro that there is an intramolecular interaction of the carboxyl-terminal domain (referred to as "CT") with a region in the cytoplasmic loop of Cx43 (amino acids 119 to 144; referred to as "L2").

View Article and Find Full Text PDF