Publications by authors named "Steven M Swasey"

A near-infrared emitting DNA-stabilized silver nanocluster (DNA-AgNC) with an unusually high fluorescence quantum yield is presented. The steady-state and time-resolved fluorescence properties of the DNA-AgNC were characterized, together with its ability to generate optically activated delayed fluorescence (OADF) and upconversion fluorescence (UCF).

View Article and Find Full Text PDF

Hydrogen bonding between nucleobases produces diverse DNA structural motifs, including canonical duplexes, guanine (G) quadruplexes, and cytosine (C) i-motifs. Incorporating metal-mediated base pairs into nucleic acid structures can introduce new functionalities and enhanced stabilities. Here we demonstrate, using mass spectrometry (MS), ion mobility spectrometry (IMS), and fluorescence resonance energy transfer (FRET), that parallel-stranded structures consisting of up to 20 G-Ag-G contiguous base pairs are formed when natural DNA sequences are mixed with silver cations in aqueous solution.

View Article and Find Full Text PDF

We use high throughput near-infrared (NIR) screening technology to discover abundant new DNA-stabilized silver clusters, AgN-DNA, that fluoresce in the NIR. These include the longest wavelength AgN-DNA fluorophores identified to date, with peak emission beyond 950 nm that extends into the NIR II tissue transparency window, and the highest silver content.

View Article and Find Full Text PDF

We present an inexpensive, generalizable approach for modifying visible wavelength fluorescence microplate readers to detect emission in the near-infrared (NIR) I (650-950 nm) and NIR II (1000-1350 nm) tissue imaging windows. These wavelength ranges are promising for high sensitivity fluorescence-based cell assays and biological imaging, but the inaccessibility of NIR microplate readers is limiting development of the requisite, biocompatible fluorescent probes. Our modifications enable rapid screening of NIR candidate probes, using short pulses of UV light to provide excitation of diverse systems including dye molecules, semiconductor quantum dots, and metal clusters.

View Article and Find Full Text PDF

DNA nucleobase sequence controls the size of DNA-stabilized silver clusters, leading to their well-known yet little understood sequence-tuned colors. The enormous space of possible DNA sequences for templating clusters has challenged the understanding of how sequence selects cluster properties and has limited the design of applications that employ these clusters. We investigate the genomic role of DNA sequence for fluorescent silver clusters using a data-driven approach.

View Article and Find Full Text PDF

In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent.

View Article and Find Full Text PDF

This work investigates the effects of dielectric environment and cluster shape on electronic excitations of fluorescent DNA-stabilized silver clusters, AgN-DNA. We first establish that the longitudinal plasmon wavelengths predicted by classical Mie-Gans (MG) theory agree with previous quantum calculations for excitation wavelengths of linear silver atom chains, even for clusters of just a few atoms. Application of MG theory to AgN-DNA with 400-850 nm cluster excitation wavelengths indicates that these clusters are characterized by a collective excitation process and suggests effective cluster thicknesses of ∼2 silver atoms and aspect ratios of 1.

View Article and Find Full Text PDF

The diverse optical and chemical properties of DNA-stabilized silver clusters (AgN-DNAs) have challenged the development of a common model for these sequence-tunable fluorophores. Although correlations between cluster geometry and fluorescence color have begun to shed light on how the optical properties of AgN-DNAs are selected, the exact mechanisms responsible for fluorescence remain unknown. To explore these mechanisms, we study four distinct purified AgN-DNAs in ethanol-water and methanol-water mixtures and find that the solvatochromic behavior of AgN-DNAs varies widely among different cluster species and differs markedly from prior results on impure material.

View Article and Find Full Text PDF

Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases.

View Article and Find Full Text PDF

Fluorescent, DNA-stabilized silver clusters are receiving much attention for sequence-selected colors and high quantum yields. However, limited knowledge of cluster structure is constraining further development of these "AgN-DNA" nanomaterials. We report the structurally sensitive, chiroptical activity of four pure AgN-DNA with wide ranging colors.

View Article and Find Full Text PDF