Publications by authors named "Steven M Ostoja"

California contains a broad geography over which climate conditions can be suitable for cultivating multiple varieties of winegrapes. However, climate change is projected to make winegrape cultivation more challenging across many of California's winegrowing regions. In order to understand the potential effects of climate change on winegrapes, this study models variety-specific phenology for six winegrape varieties and quantifies the change in phenology and viticulturally-important agroclimate metrics over 12 of California's American Viticultural Areas (AVAs) by the mid-21st century.

View Article and Find Full Text PDF

Climate change is expected to have a major hydrological impact on the core breeding habitat and migration corridors of many amphibians in the twenty-first century. The Yosemite toad (Anaxyrus canorus) is a species of meadow-specializing amphibian endemic to the high-elevation Sierra Nevada Mountains of California. Despite living entirely on federal lands, it has recently faced severe extirpations, yet our understanding of climatic influences on population connectivity is limited.

View Article and Find Full Text PDF

Although the impacts of teleconnection indices on climate metrics such as precipitation and temperature in California have been widely studied, less attention has been given to the impact on integrated climate indices such as chill accumulation. This study investigates the linkages between large-scale teleconnections and winter chill accumulation for specialty crops in California, which may enable more effective and dynamic adaptation to in-season climate variability. Three large-scale teleconnection indices were selected: Oceanic Nino Index (ONI), Pacific-North American teleconnection pattern (PNA), and Pacific Decadal Oscillation (PDO) index to assess their effects on chill accumulation.

View Article and Find Full Text PDF

Extreme heat events will challenge agricultural production and raise the risk of food insecurity. California is the largest agricultural producer in the United States, and climate change and extreme heat may significantly affect the state's food production. This paper provides a summary of the current literature on crop responses to extreme heat, with a focus on perennial agriculture in California.

View Article and Find Full Text PDF

Species endemic to alpine environments can evolve via steep ecological selection gradients between lowland and upland environments. Additionally, many alpine environments have faced repeated glacial episodes over the past two million years, fracturing these endemics into isolated populations. In this "glacial pulse" model of alpine diversification, cycles of allopatry and ecologically divergent glacial refugia play a role in generating biodiversity, including novel admixed ("fused") lineages.

View Article and Find Full Text PDF

We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California.

View Article and Find Full Text PDF

Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.

View Article and Find Full Text PDF

Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests.

View Article and Find Full Text PDF

A central challenge of conservation biology is using limited data to predict rare species occurrence and identify conservation areas that play a disproportionate role in regional persistence. Where species occupy discrete patches in a landscape, such predictions require data about environmental quality of individual patches and the connectivity among high quality patches. We present a novel extension to species occupancy modeling that blends traditional predictions of individual patch environmental quality with network analysis to estimate connectivity characteristics using limited survey data.

View Article and Find Full Text PDF