J Nanosci Nanotechnol
May 2018
Adsorption of Cu2+ ions from aqueous solutions is an increasingly important problem. Nano-titanate ETS-2 (Engelhard Titanosilicate-2) was studied for Cu2+ removal from aqueous solutions through the batch technique at room temperature. Structural and chemical properties of both ETS-2 sorbent and aqueous solution were studied by different characterization tests such as Thermogravimetric Analysis, Energy Dispersive X-ray spectroscopy, X-ray Photoelectron Spectroscopy and Inductively Coupled Plasma measuremen.
View Article and Find Full Text PDFEngelhard Titanium Silicate-2 (ETS-2), a sodium nanotitanate, was surface functionalized by ion exchanging the solid with copper and chromium ions. The ability of this bi-metallic adsorbent to remove H2S at elevated temperatures was assessed using a dynamic breakthrough system and contrasted against an analogous mixed metal oxide, Cu-Cr-O. Unlike Cu-Cr-O, the H2S capacity for Cu-Cr-ETS-2 remains unchanged from 350 °C up to 950 °C.
View Article and Find Full Text PDFA mixed-matrix membrane composed of polydimethylsiloxane (PDMS) as the continuous phase and clinoptilolite, a naturally occurring zeolite, as the active phase has been used to decrease the conductivity of water by more than 80% across the membrane. Testing was carried out using a cross-flow configuration at temperatures as high as 160 °C using a constant transmembrane pressure of 8 bar. The simple fabrication method for the membrane, the durability of the system under the test conditions, and a suitable flux rate make such membranes promising candidates for industrial wastewater treatment.
View Article and Find Full Text PDFETS-10, a mixed octahedral/tetrahedral titanosilicate molecular sieve, has a unique architecture where its 0.8 nm pores are lined exclusively with silicon which imparts a high degree of chemical stability, yet the anionic framework can be modified by cation exchange. In this work, the hydrogen-exchanged form of ETS-10 was impregnated with monoethanolamine and the thermal stability and CO2 adsorption characteristics were analyzed.
View Article and Find Full Text PDFDisk membranes generated from high-purity natural clinoptilolite mineral rock have shown promising water desalination and de-oiling performance. In order to scale up production of these types of membranes for industrial wastewater treatment applications, a coating strategy was devised. A composite mixture of natural clinoptilolite from St.
View Article and Find Full Text PDFSilver zeolites, especially Ag-ETS-10 and Ag-mordenite, actively bind xenon and iodine, two prime contaminants common to nuclear accidents. The evolution of silver species on silver exchanged ETS-10 (Ag/ETS-10) and mordenite (Ag/Mor) has been investigated by exposing the materials to a series of activation conditions in Ar, air and H2. The samples were characterized by XRD, SEM and solid-state 109Ag, 29Si and 27AI MAS NMR.
View Article and Find Full Text PDFSilver-exchanged molecular sieves have shown great promise in applications ranging from antimicrobial materials to the adsorption of xenon and iodide, two key contaminants emitted from nuclear reactors. In this work, solid-state 27Al and 29Si MAS NMR and TGA were used to study silver reduction in silver-exchanged chabazite under various thermal conditions. The solid-state NMR results for both 27Al and 29Si show that there are no major changes in the chabazite during silver reduction in an argon stream; however a progressive structural change does take place in the hydrogen stream.
View Article and Find Full Text PDFWe report that surface templated and supported palladium nanoparticles self assemble on ETS-10 type molecular sieve surfaces by simple exchange and activation procedures in the absence of a reductant. This procedure is similar to the one previously reported for silver nanoparticle self assembly on ETS-10. We observed a bimodal distribution with particle sizes ranging from 2-5 and 15-30 nm.
View Article and Find Full Text PDFTitanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations.
View Article and Find Full Text PDFEnviron Sci Technol
May 2009
Magnetic zeolite composites with supported silver nanoparicles are a new class of multifunctional materials with potential applications as recyclable catalysts, disinfectants, and sorbents. This study evaluated the suitability of the magnetic composites as sorbents for the removal of elemental mercury vapor from flue gases of coal-fired power plants. The sorbents were found to completely capture mercury at temperatures up to 200 degrees C, and the mercury capacity of the sorbents was found to be affected by the state, content, and size of the silver particles in the composite.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2009
High density, uniform, surface-supported nanosilver particles can be generated on mineral chabazite by thermal reduction of exchanged silver cations. These nanoparticles have properties unique from those of bulk silver, including antimicrobial activity, which are a function of particle size. In this study, the activation environment is manipulated in order to alter the average size of the silver particles.
View Article and Find Full Text PDFTitanium silicate molecular sieves contain structural units that are fundamentally different from classical aluminosilicates. In addition to ordered octahedral titanium chains, members of the zorite family contain pentagonal titanium units which project into the main adsorption channels of the framework. We report that the effective pore size of these materials can be controlled by substituting halogens at the O7 sites that cap the pentagonal pyramids projecting into the channel.
View Article and Find Full Text PDF