Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes.
View Article and Find Full Text PDFThe major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats.
View Article and Find Full Text PDFThe outer leaflet of the outer membrane of nearly all Gram-negative bacteria contains lipopolysaccharide (LPS). The distal end of LPS may be capped with O antigen, a long polysaccharide that can range from a few to hundreds of sugars in length. The chain length of the polysaccharide has many implications for bacterial survival and consequently is tightly controlled.
View Article and Find Full Text PDFPseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
August 2017
Bacterial polysaccharides play an essential role in cell viability, virulence, and evasion of host defenses. Although the polysaccharides themselves are highly diverse, the pathways by which bacteria synthesize these essential polymers are conserved in both Gram-negative and Gram-positive organisms. By utilizing a lipid linker, a series of glycosyltransferases and integral membrane proteins act in concert to synthesize capsular polysaccharide, teichoic acid, and teichuronic acid.
View Article and Find Full Text PDFO antigen (O-Ag) in many bacteria is synthesized via the Wzx/Wzy-dependent pathway in which Wzy polymerizes lipid-linked O-Ag subunits to modal lengths regulated by Wzz. Characterization of 83 site-directed mutants of Wzy from Pseudomonas aeruginosa PAO1 (WzyPa) in topologically-mapped periplasmic (PL) and cytoplasmic loops (CL) verified the functional importance of PL3 and PL5, with the former shown to require overall cationic properties. Essential Arg residues in the RX10G motifs of PL3 and PL5 were found to be conserved in putative homologues of WzyPa, as was the overall sequence homology between these two periplasmic loops in each protein.
View Article and Find Full Text PDF