Publications by authors named "Steven M Bromidge"

Starting from benzylpyrimidine 2, molecular modeling and X-ray crystallography were used to design highly potent inhibitors of Interleukin-2 inducible T-cell kinase (ITK). Sulfonylpyridine 4i showed sub-nanomolar affinity against ITK, was selective versus Lck and its activity in the Jurkat cell-based assay was greatly improved over 2.

View Article and Find Full Text PDF

Inhibition of the non-receptor tyrosine kinase ITK, a component of the T-cell receptor signalling cascade, may represent a novel treatment for allergic asthma. Here we report the structure-based optimization of a series of benzothiazole amides that demonstrate sub-nanomolar inhibitory potency against ITK with good cellular activity and kinase selectivity. We also elucidate the binding mode of these inhibitors by solving the X-ray crystal structures of several inhibitor-ITK complexes.

View Article and Find Full Text PDF

During the lead optimization of NK(1)/NK(3) receptor antagonists program, a focused exploration of molecules bearing a lactam moiety was performed. The aim of the investigation was to identify the optimal position of the carbonyl and hydroxy methyl group in the lactam moiety, in order to maximize the in vitro affinity and the level of insurmountable antagonism at both NK(1) and NK(3) receptors. The synthesis and biological evaluation of these novel lactam derivatives, with potent and balanced NK(1)/NK(3) activity, were reported in this paper.

View Article and Find Full Text PDF

In an effort to identify selective drug like pan-antagonists of the 5-HT1 autoreceptors, studies were conducted to elaborate a previously reported dual acting 5-HT1 antagonist/SSRI structure. A novel series of compounds was identified showing low intrinsic activities and potent affinities across the 5-HT1A, 5-HT1B, and 5-HT1D receptors as well as high selectivity against the serotonin transporter. From among these compounds, 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone (36) was found to combine potent in vivo activity with a strong preclinical developability profile, and on this basis it was selected as a drug candidate with the aim of assessing its potential as a fast-onset antidepressant/anxiolytic.

View Article and Find Full Text PDF

5-{2-[4-(2-Methyl-5-quinolinyl)-1-piperazinyl]ethyl}-2(1H)-quinolinones and 3,4-dihydro-2(1H)-quinolinones have been identified with different combinations of 5-HT(1) autoreceptor antagonist and hSerT potencies and excellent rat PK profiles. The availability of tool compounds with a range of profiles at targets known to play a key role in the control of synaptic 5-HT levels will allow exploration of different pharmacological profiles in a range of animal behavioral and disease models.

View Article and Find Full Text PDF

Bioisoteric replacement of the metabolically labile N-methyl amide group of a series of benzoxazinones with small heterocyclic rings has led to novel series of fused tricyclic benzoxazines which are potent 5-HT(1A/B/D) receptor antagonists with and without concomitant human serotonin transporter (hSerT) activity. Optimizing against multiple parameters in parallel identified 6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}-4H-imidazo[5,1-c][1,4]benzoxazine-3-carboxamide (GSK588045) as a potent 5-HT(1A/B/D) receptor antagonist with a high degree of selectivity over human ether-a-go-go related gene (hERG) potassium channels, favorable pharmacokinetics, and excellent activity in vivo in rodent pharmacodynamic (PD) models. On the basis of its outstanding overall profile, this compound was progressed as a clinical candidate with the ultimate aim to assess its potential as a faster acting antidepressant/anxiolytic with reduced side-effect burden.

View Article and Find Full Text PDF

8-[2-(4-Aryl-1-piperazinyl)ethyl]-2H-1,4-benzoxazin-3(4H)-ones have been identified as highly potent 5-HT(1A/B/D) receptor antagonists with and without additional SerT activity and a high degree of selectivity over hERG potassium channels. Modulation of the different target activities gave compounds with a range of profiles suitable for further in vivo characterization.

View Article and Find Full Text PDF

Investigation of a series 6-[2-(4-aryl-1-piperazinyl)ethyl]-2H-1,4-benzoxazin-3(4H)-ones has led to the discovery of potent 5-HT(1A/1B/1D) receptor antagonists with and without additional SerT affinity. Modulation of the different target activities gave compounds with a range of profiles suitable for further in vivo characterization.

View Article and Find Full Text PDF

SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide) has high affinity for human recombinant and native 5-HT(6) receptors, with pK(i) values 9.11+/-0.03 and 9.

View Article and Find Full Text PDF

Bisaryl cyclic ureas have been identified as high affinity 5-HT2C receptor antagonists with selectivity over 5-HT2A and 5-HT2B. Compounds such as 8 and 22 have shown oral activity in a centrally mediated pharmacodynamic model of 5-HT2C function in rodents.

View Article and Find Full Text PDF

Starting from the potent and selective but poorly brain penetrant 5-HT6 receptor antagonist SB-271046, a successful strategy for improving brain penetration was adopted involving conformational constraint with concomitant reduction in hydrogen bond count. This provided a series of bicyclic heteroarylpiperazines with high 5-HT6 receptor affinity. 5-Chloroindole 699929 combined high 5-HT6 receptor affinity with excellent brain penetration and also had good oral bioavailability in both rat and dog.

View Article and Find Full Text PDF
Article Synopsis
  • High-throughput screening of biphenylmethylamines, created through solid-phase chemistry, uncovered compounds that strongly bind to the 5-HT5A receptor.
  • The study explored structure-activity relationships, aiding in the refinement of these compounds.
  • A notable finding was the biphenylmethylamine derivative 11, which emerged as a powerful and selective antagonist for the 5-HT5A receptor.
View Article and Find Full Text PDF

Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2).

View Article and Find Full Text PDF

The synthesis of novel 3-(octahydropyrido[1,2-a]pyrazin-2-yl)- and 3-(hexahydropyrrolo[1,2-a]pyrazin-2-yl)phenyl-2-benzo[b]thiophene sulphonamide derivatives 3, (S)-4 and (R)-4 is described. The compounds show high affinity for the 5-HT6 receptor, excellent selectivity against a range of other receptors and good brain penetration.

View Article and Find Full Text PDF

N-(2,5-Dibromo-3-fluorophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulfonamide (SB-357134) potently inhibited [125I]SB-258585 and [3H]LSD binding in a HeLa cell line expressing human 5-HT(6) receptors (pK(i)=8.6 and 8.54, respectively).

View Article and Find Full Text PDF