Publications by authors named "Steven L Wood"

Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects.

View Article and Find Full Text PDF

Metastasis to bone occurs in over 70% of patients with advanced breast cancer resulting in skeletal complications, including pathological fractures, hypercalcaemia, and bone pain. Significant advances have been made in the treatment of bone metastases, including the use of antiresorptive drugs, such as bisphosphonates, as well as antibody-based therapies targeting key signalling intermediates within the process of cancer-mediated bone destruction. Despite these advances, treatment is not without side effects, including osteonecrosis of the jaw therefore biomarkers predictive of which patients are at high risk of developing bone spread are required to enable personalized medicine initiatives within this important disease area.

View Article and Find Full Text PDF

Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker and to assess its utility in predicting response to adjuvant zoledronic acid (zoledronate). We used quantitative proteomics (stable isotope labelling by amino acids in cell culture-mass spectrometry; SILAC-MS) to compare protein expression in a bone-homing variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast cancer.

View Article and Find Full Text PDF

Background: Bone is the predominant site of metastasis from breast cancer, and recent trials have demonstrated that adjuvant bisphosphonate therapy can reduce bone metastasis development and improve survival. There is an unmet need for prognostic and predictive biomarkers so that therapy can be appropriately targeted.

Methods: Potential biomarkers for bone metastasis were identified using proteomic comparison of bone-metastatic, lung-metastatic, and nonmetastatic variants of human breast cancer MDA-MB-231 cells.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related death worldwide with a 5-year survival rate of less than 15%, despite significant advances in both diagnostic and therapeutic approaches. Combined genomic and transcriptomic sequencing studies have identified numerous genetic driver mutations that are responsible for the development of lung cancer. In addition, molecular profiling studies identify gene products and their mutations which predict tumour responses to targeted therapies such as protein tyrosine kinase inhibitors and also can offer explanation for drug resistance mechanisms.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases and currently has an overall five-year survival rate of only 15%. Patients presenting with advanced stage NSCLC die within 18-months of diagnosis. Metastatic spread accounts for >70% of these deaths.

View Article and Find Full Text PDF

Despite well-recognised advances in breast cancer treatment, there remain substantial numbers of patients who develop metastatic disease, of which up to 70% involves spread to bone, resulting in skeletal complications which have a major negative impact on mortality and quality of life. Bisphosphonates and newer bone-targeted agents have reduced the prevalence of skeletal complications, yet there remains significant unmet clinical need, particularly for the development of more specific therapies for the prevention and treatment of metastatic bone disease, for the prediction of risk of its development in individual patients and for the prediction of response to treatments. Modern 'omic' strategies can potentially make a major contribution to meeting this need.

View Article and Find Full Text PDF

Early identification and prognostic stratification of delayed graft function following renal transplantation has significant potential to improve outcome. Mass spectrometry analysis of serum samples, before and on day 2 post transplant from five patients with delayed graft function and five with an uncomplicated transplant, identified aminoacylase-1 (ACY-1) as a potential outcome biomarker. Following assay development, analysis of longitudinal samples from an initial validation cohort of 55 patients confirmed that the ACY-1 level on day 1 or 2 was a moderate predictor of delayed graft function, similar to serum creatinine, complementing the strongest predictor cystatin C.

View Article and Find Full Text PDF

Urine is an ideal body fluid for the detection of protein markers produced by urological cancers as it can be sampled noninvasively and contains secreted and directly shed proteins from the prostate, bladder and kidney. Major challenges of working with urine include high inter-individual and intra-individual variability, low protein concentration, the presence of salts and the dynamic range of protein expression. Despite these challenges, significant progress is being made using modern proteomic methods to identify and characterize protein-based markers for urological cancers.

View Article and Find Full Text PDF

Metastasis to the skeleton is common in advanced renal cancer and leads to debilitating skeletal complications including severe pain, increased fracture rate and spinal cord compression. The incidence of renal cell carcinoma is increasing by around 2% per year and recent advances in targeted anti-angiogenic therapy for advanced disease are expected to lead to longer survival times. The clinical management of metastatic bone disease in renal cell carcinoma therefore merits greater focus than hitherto.

View Article and Find Full Text PDF

Immunodepletion of clinical fluids to overcome the dominance by a few very abundant proteins has been explored but studies are few, commonly examining only limited aspects with one analytical platform. We have systematically compared immunodepletion of 6, 14, or 20 proteins using serum from renal transplant patients, analysing reproducibility, depth of coverage, efficiency, and specificity using 2-D DIGE ('top-down') and LC-MS/MS ('bottom-up'). A progressive increase in protein number (≥2 unique peptides) was found from 159 in unfractionated serum to 301 following 20 protein depletion using a relatively high-throughput 1-D-LC-MS/MS approach, including known biomarkers and moderate-lower abundance proteins such as NGAL and cytokine/growth factor receptors.

View Article and Find Full Text PDF

2-DE remains one of the most commonly used separation techniques for complex protein mixtures. This article describes a new approach to 2-DE sample assessment using SDS capillary gel electrophoresis (in Beckman Coulter sieving medium) combined with multi-pixel detection. The performance of this platform was investigated using protein samples prepared for 2-DE.

View Article and Find Full Text PDF

Proteomics-based approaches are generating considerable data in clinical nephrology covering almost all aspects of the discipline. Proteomic experiments commonly involve fractionation and protein separation, followed by mass spectrometric analysis to identify proteins and peptides. Biostatistical and bioinformatical input is essential in such experiments, from initial experimental design to analysis of data.

View Article and Find Full Text PDF