Scaling up superconducting quantum circuits based on transmon qubits necessitates substantial enhancements in qubit coherence time. Over recent years, tantalum (Ta) has emerged as a promising candidate for transmon qubits, surpassing conventional counterparts in terms of coherence time. However, amorphous surface Ta oxide layer may introduce dielectric loss, ultimately placing a limit on the coherence time.
View Article and Find Full Text PDFOver the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces.
View Article and Find Full Text PDFA versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters.
View Article and Find Full Text PDF