ACM J Emerg Technol Comput Syst
June 2012
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
A high-voltage, high-current pulse generator ASIC based on 0.35-εm high-voltage CMOS technology is presented. The chip has eight independently-controlled biphasic output channels that can generate either current- or voltage-controlled pulses.
View Article and Find Full Text PDFThis letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2003
High-frequency ultrasound (above 10 MHz) has been used successfully in many medical applications, including eye, skin, gastrointestinal, intravascular, and Doppler flow imaging. Most of these applications use single-element transducers, thereby imposing a tradeoff between resolution and depth of field. Fabrication difficulties and the need for high-speed electronic beamformers have prevented widespread use of arrays at high frequencies.
View Article and Find Full Text PDF