Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H i) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8.
View Article and Find Full Text PDFThe majority of massive disk galaxies in the local Universe show a stellar barred structure in their central regions, including our Milky Way. Bars are supposed to develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence typical of disk galaxies at high redshift suppresses or delays bar formation. Moreover, simulations predict bars to be almost absent beyond z = 1.
View Article and Find Full Text PDFDuring the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors.
View Article and Find Full Text PDF