Objective: Vagus nerve stimulation (VNS) paired with rehabilitation therapy improved motor status compared to rehabilitation alone in the phase III VNS-REHAB stroke trial, but treatment response was variable and not associated with any clinical measures acquired at baseline, such as age or side of paresis. We hypothesized that neuroimaging measures would be associated with treatment-related gains, examining performance of regional injury measures versus global brain health measures in parallel with clinical measures.
Methods: Baseline magnetic resonance imaging (MRI) scans in the VNS-REHAB trial were used to derive regional injury measures (extent of injury to corticospinal tract, the primary regional measure; plus extent of injury to precentral gyrus and postcentral gyrus; lesion volume; and lesion topography) and global brain health measures (degree of white matter hyperintensities, the primary global brain measure; plus volumes of cerebrospinal fluid, cortical gray matter, white matter, each thalamus, and total brain).
Background: Stiff-Knee gait affects 25-75 % of individuals with post-stroke gait impairment and is typically defined as reduced swing phase knee flexion. Different studies use various measures to identify Stiff-Knee gait, such as peak swing knee flexion angle, timing of peak knee flexion, knee range of motion, and ankle push-off acceleration, leading to inconsistent results.
Methods: This study used univariate cluster analysis to examine the independence, consistency, validity, and accuracy of different definitions in 50 post-stroke individuals (24 with and 26 without Stiff-Knee gait), as determined by a physiatrist.
Restoring motor function after stroke necessitates involvement of numerous cognitive systems. However, the impact of damage to motor and cognitive network organization on recovery is not well understood. To discover correlates of successful recovery, we explored imaging characteristics in chronic stroke subjects by combining noninvasive brain stimulation and fMRI.
View Article and Find Full Text PDFObjective: The objectives of this study were to confirm the Berg Balance Scale's (BBS) measurement properties and unidimensionality with an item response theory analysis in persons with subacute and chronic stroke and to examine the precision and efficiency of computerized adaptive testing (CAT).
Methods: Data were obtained from 519 ambulatory persons with subacute and chronic stroke in 2 retrospective databases. A principal component analysis (PCA) of residuals was used to evaluate unidimensionality.
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected.
View Article and Find Full Text PDFBackground: Balance and mobility impairments are prevalent post-stroke and a large number of survivors require walking assistance at 6 months post-stroke which diminishes their overall quality of life. Personalized interventions for gait and balance rehabilitation are crucial. Recent evidence indicates that stroke lesions in primary motor pathways, such as corticoreticular pathways (CRP) and corticospinal tract (CST), may lead to reliance on alternate motor pathways as compensation, but the current evidence lacks comprehensive knowledge about the underlying neural mechanisms.
View Article and Find Full Text PDFStroke is one of the most common and debilitating neurological conditions worldwide. Those who survive experience motor, sensory, speech, vision, and/or cognitive deficits that severely limit remaining quality of life. While rehabilitation programs can help improve patients' symptoms, recovery is often limited, and patients frequently continue to experience impairments in functional status.
View Article and Find Full Text PDFChronic motor impairments are a leading cause of disability after stroke. Previous studies have predicted motor outcomes based on the degree of damage to predefined structures in the motor system, such as the corticospinal tract. However, such theory-based approaches may not take full advantage of the information contained in clinical imaging data.
View Article and Find Full Text PDFBackground: Implanted vagus nerve stimulation (VNS) and transcutaneous auricular VNS (taVNS) have been primarily administered clinically to the unilateral-left vagus nerve. This left-only convention has proved clinically beneficial in brain disorders. However, in stroke survivors, the presence of a lesion in the brain may complicate VNS-mediated signaling, and it is important to understand the laterality effects of VNS in stroke survivors to optimize the intervention.
View Article and Find Full Text PDFBackground: Integrity of the corticospinal tract (CST) is an important biomarker for upper limb motor function following stroke. However, when structurally compromised, other tracts may become relevant for compensation or recovery of function.
Methods: We used the ENIGMA Stroke Recovery data set, a multicenter, retrospective, and cross-sectional collection of patients with upper limb impairment during the chronic phase of stroke to test the relevance of tracts in individuals with less and more severe (laterality index of CST fractional anisotropy ≥0.
Ankle dorsiflexion function during swing phase of the gait cycle contributes to foot clearance and plays an important role in walking ability post-stroke. Commonly used biomechanical measures such as foot clearance and ankle joint excursion have limited ability to accurately evaluate dorsiflexor function in stroke gait. We retrospectively evaluated ankle angular velocity and ankle angular acceleration as direct measures for swing phase dorsiflexor function in post-stroke gait of 61 chronic stroke survivors.
View Article and Find Full Text PDFTotal hip arthroplasty is a widely performed operation allowing disabled patients to improve their quality of life to a degree greater than any other elective procedure. Planning for a THA requires adequate patient assessment and preoperative characterizations of acetabular bone loss via radiographs and specific classification schemes. Some surgeons may be inclined to ream at a larger diameter thinking it would lead to a more stable press-fit, but this could be detrimental to the acetabular wall, leading to intraoperative fracture.
View Article and Find Full Text PDFDuring rehabilitation, a large proportion of stroke patients either plateau or begin to lose motor skills. By priming the motor system, transcranial direct current stimulation (tDCS) is a promising clinical adjunct that could augment the gains acquired during therapy sessions. However, the extent to which patients show improvements following tDCS is highly variable.
View Article and Find Full Text PDFBackground And Objectives: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance.
View Article and Find Full Text PDFPurpose: Poststroke fatigue (PSF) contributes to increased mortality and reduces participation in rehabilitative therapy. Although PSF's negative influences are well known, there are currently no effective evidence-based treatments for PSF. The lack of treatments is in part because of a dearth of PSF pathophysiological knowledge.
View Article and Find Full Text PDFEvidence supporting the benefits of locomotor training (LT) to improve walking ability following stroke are inconclusive and could likely be improved with a better understanding of the effects of individual parameters i.e., body weight support (BWS), speed, and therapist assistance and their interactions with walking ability and specific impairments.
View Article and Find Full Text PDFBackground: Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking.
View Article and Find Full Text PDFBackground: Vagus Nerve Stimulation (VNS) paired with rehabilitation improved upper extremity impairment and function in a recent pivotal, randomized, triple-blind, sham-controlled trial in people with chronic arm weakness after stroke.
Objective: We aimed to determine whether treatment effects varied across candidate subgroups, such as younger age or less injury.
Methods: Participants were randomized to receive rehabilitation paired with active VNS or rehabilitation paired with sham stimulation (Control).
Early (2020) reports on mortality in patients with coronavirus disease 2019 (COVID-19) who underwent orthopedic surgery ranged from 20.5% to 56%, but these studies included elderly patients with multiple comorbidities. The mortality rate for younger and asymptomatic COVID-19-positive patients undergoing orthopedic surgery after high-energy trauma is underreported.
View Article and Find Full Text PDFBackground: Although the coronavirus disease 19 (COVID-19) pandemic has now impacted the world for over two years, the persistent secondary neuropsychiatric effects are still not fully understood. These "long COVID" symptoms, also referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), can persist for months after infection without any effective treatments. Long COVID involves a complex heterogenous symptomology and can lead to disability and limit work.
View Article and Find Full Text PDFBackground Although the coronavirus disease 19 (COVID-19) pandemic has now impacted the world for over two years, the persistent secondary neuropsychiatric effects are still not fully understood. These "long COVID" symptoms, also referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), can persist for months after infection without any effective treatments. Long COVID involves a complex heterogenous symptomology and can lead to disability and limit work.
View Article and Find Full Text PDF