The molecular mechanisms of hepatitis C virus (HCV) persistence and pathogenesis are poorly understood. The design of an effective HCV vaccine is challenging despite a robust humoral immune response against closely related strains of HCV. This is primarily because of the huge genetic diversity of HCV and the molecular evolution of various virus escape mechanisms.
View Article and Find Full Text PDFUnlabelled: Direct-acting antivirals (DAAs) have led to a high cure rate in treated patients with chronic hepatitis C virus (HCV) infection, but this still leaves a large number of treatment failures secondary to the emergence of resistance-associated variants (RAVs). To increase the barrier to resistance, a complementary strategy is to use neutralizing human monoclonal antibodies (HMAbs) to prevent acute infection. However, earlier efforts with the selected antibodies led to RAVs in animal and clinical studies.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a major global disease burden, often leading to chronic liver diseases, cirrhosis, cancer, and death in those infected. Despite the recent approval of antiviral therapeutics, a preventative vaccine is recognized as the most effective means to control HCV globally, particularly in at-risk and developing country populations. Here we describe the efforts and challenges related to the development of an HCV vaccine, which after decades of research have not been successful.
View Article and Find Full Text PDFUnlabelled: There are 3-4 million new hepatitis C virus (HCV) infections yearly. The extensive intergenotypic sequence diversity of envelope proteins E1 and E2 of HCV and shielding of important epitopes by hypervariable region 1 (HVR1) of E2 are believed to be major hindrances to developing universally protective HCV vaccines. Using cultured viruses expressing the E1/E2 complex of isolates H77 (genotype 1a), J6 (2a), or S52 (3a), with and without HVR1, we tested HVR1-mediated neutralization occlusion in vitro against a panel of 12 well-characterized human monoclonal antibodies (HMAbs) targeting diverse E1, E2, and E1/E2 epitopes.
View Article and Find Full Text PDFWith more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection.
View Article and Find Full Text PDFUnlabelled: Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies binding to HVR1 interfere with binding of other superior neutralizing antibodies. Epitope mapping of human monoclonal antibodies (HMAbs) that bind to an adjacent, conserved domain on E2 encompassing aa 412 to 423 revealed two subsets, designated HC33 HMAbs.
View Article and Find Full Text PDFUnlabelled: Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species.
View Article and Find Full Text PDFBackground & Aims: Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein.
View Article and Find Full Text PDFFor hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs.
View Article and Find Full Text PDFUnlabelled: Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation.
View Article and Find Full Text PDFA challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423.
View Article and Find Full Text PDFUnlabelled: Human monoclonal antibodies (HMAbs) with neutralizing capabilities constitute potential immune-based treatments or prophylaxis against hepatitis C virus (HCV). However, lack of cell culture-derived HCV (HCVcc) harboring authentic envelope proteins (E1/E2) has hindered neutralization investigations across genotypes, subtypes, and isolates. We investigated the breadth of neutralization of 10 HMAbs with therapeutic potential against a panel of 16 JFH1-based HCVcc-expressing patient-derived Core-NS2 from genotypes 1a (strains H77, TN, and DH6), 1b (J4, DH1, and DH5), 2a (J6, JFH1, and T9), 2b (J8, DH8, and DH10), 2c (S83), and 3a (S52, DBN, and DH11).
View Article and Find Full Text PDFUnlabelled: Immunotherapy and vaccine development for hepatitis C virus (HCV) will depend on broadly reactive neutralizing antibodies (NAbs). However, studies in infectious strain JFH1-based culture systems expressing patient-derived Core-NS2 proteins have suggested neutralization resistance for specific HCV strains, in particular, of genotype 2. To further examine this phenomenon, we developed a panel of HCV genotype 2 recombinants for testing of sensitivity to neutralization by chronic-phase patient sera and lead human monoclonal antibodies (HMAbs).
View Article and Find Full Text PDFThe high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a core-NS2, we exchanged E2 with functional isolate sequences of genotypes 1a (alternative isolate), 1b, and 2a.
View Article and Find Full Text PDFA challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423.
View Article and Find Full Text PDFThe PI3K-AKT signaling pathway plays an important role in cell growth and metabolism. Here we report that hepatitis C virus (HCV) transiently activates the PI3K-AKT pathway. This activation was observed as early as 15 min postinfection, peaked by 30 min, and became undetectable at 24 h postinfection.
View Article and Find Full Text PDFThe E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes.
View Article and Find Full Text PDFThe majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A.
View Article and Find Full Text PDFA critical first step in a "rational vaccine design" approach for hepatitis C virus (HCV) is to identify the most relevant mechanisms of immune protection. Emerging evidence provides support for a protective role of virus neutralizing antibodies, and the ability of the B cell response to modify the course of acute HCV infection. This has been made possible by the development of in vitro cell culture models, based on HCV retroviral pseudotype particles expressing E1E2 and infectious cell culture-derived HCV virions, and small animal models that are robust tools in studies of antibody-mediated virus neutralization.
View Article and Find Full Text PDFThe Hepatitis C virus E1 and E2 envelope proteins are the major players in all events required for virus entry into target cells. In addition, the recently developed HCV cell culture system has indicated that E1E2 heterodimer formation is a prerequisite for viral particle production. In this paper, we explored a new genetic approach to construct intergenotypic 2a/1b chimeras, maintaining the structural region of the infectious strain JFH1 and substituting the soluble portion of E1 and/or E2 proteins.
View Article and Find Full Text PDFHepatitis C Virus E1E2 heterodimers are components of the viral spike. Although there is a general agreement on the necessity of the co-expression of both E1 and E2 on a single coding unit for their productive folding and assembly, in a previous study using an in vitro system we obtained strong indications that E1 can achieve folding in absence of E2. Here, we have studied the folding pathway of unescorted E1 from stably expressing CHO cells, compared to the folding observed in presence of the E2 protein.
View Article and Find Full Text PDFUnderstanding the interaction between broadly neutralizing antibodies and their epitopes provides a basis for the rational design of a preventive hepatitis C virus (HCV) vaccine. CBH-2, HC-11, and HC-1 are representatives of antibodies to overlapping epitopes on E2 that mediate neutralization by blocking virus binding to CD81. To obtain insights into escape mechanisms, infectious cell culture virus, 2a HCVcc, was propagated under increasing concentrations of a neutralizing antibody to isolate escape mutants.
View Article and Find Full Text PDF