Publications by authors named "Steven Jordan"

Whole Person Care (WPC) is an emerging framework that emphasises the clinician's role in empowering patient healing. However, reliably translating a framework's theory into practice is a recognised challenge for clinicians. Observational studies have revealed discrepancies between a clinician's stated values in theory and how these may be implemented in practice.

View Article and Find Full Text PDF

Quadriceps tendon ruptures compromise the knee extensor mechanism and cause an inability to ambulate and significant functional limitations. Therefore, the vast majority of quadriceps tendon ruptures are indicated for operative intervention to restore patient mobility and function. Although these injuries were traditionally repaired using a transosseous repair technique, recent literature has shown that suture anchor repair may offer biomechanical advantages.

View Article and Find Full Text PDF

The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 μM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.

View Article and Find Full Text PDF

The glucokinase-glucokinase regulatory protein (GK-GKRP) complex plays an important role in controlling glucose homeostasis in the liver. We have recently disclosed a series of arylpiperazines as in vitro and in vivo disruptors of the GK-GKRP complex with efficacy in rodent models of type 2 diabetes mellitus (T2DM). Herein, we describe a new class of aryl sulfones as disruptors of the GK-GKRP complex, where the central piperazine scaffold has been replaced by an aromatic group.

View Article and Find Full Text PDF

Structure-activity relationship investigations conducted at the 5-position of the N-pyridine ring of a series of N-arylsulfonyl-N'-2-pyridinyl-piperazines led to the identification of a novel bis-pyridinyl piperazine sulfonamide (51) that was a potent disruptor of the glucokinase-glucokinase regulatory protein (GK-GKRP) interaction. Analysis of the X-ray cocrystal of compound 51 bound to hGKRP revealed that the 3-pyridine ring moiety occupied a previously unexplored binding pocket within the protein. Key features of this new binding mode included forming favorable contacts with the top face of the Ala27-Val28-Pro29 ("shelf region") as well as an edge-to-face interaction with the Tyr24 side chain.

View Article and Find Full Text PDF

We have recently reported a novel approach to increase cytosolic glucokinase (GK) levels through the binding of a small molecule to its endogenous inhibitor, glucokinase regulatory protein (GKRP). These initial investigations culminated in the identification of 2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (1, AMG-3969), a compound that effectively enhanced GK translocation and reduced blood glucose levels in diabetic animals. Herein we report the results of our expanded SAR investigations that focused on modifications to the aryl carbinol group of this series.

View Article and Find Full Text PDF

In the previous report , we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969).

View Article and Find Full Text PDF

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP).

View Article and Find Full Text PDF

We describe a systematic study of how macrocyclization in the P₁-P₃ region of hydroxyethylamine-based inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β-peptide (Aβ)-lowering activity in HEK293T cells stably expressing APPSW. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules.

View Article and Find Full Text PDF

Hybrid structural methods have been used in recent years to understand protein-protein or protein-ligand interactions where high resolution crystallography or NMR data on the protein of interest has been limited. For G protein-coupled receptors (GPCRs), high resolution structures of native structural forms other than rhodopsin have not yet been achieved; gaps in our knowledge have been filled by creative crystallography studies that have developed stable forms of receptors by multiple means. The neurotransmitter serotonin (5-hydroxytryptamine) is a key GPCR-based signaling molecule affecting many physiological manifestations in humans ranging from mood and anxiety to bowel function.

View Article and Find Full Text PDF

G-protein-coupled serotonin receptor type 4 (5-HT(4)R) is a pharmacological target implicated in a variety of gastrointestinal and nervous system disorders. As for many other integral membrane proteins, structural and functional studies of this receptor could be facilitated by its heterologous overexpression in eukaryotic systems that can perform appropriate post-translational modifications (PTMs) on the protein. We previously reported the development of an expression system that employs rhodopsin's biosynthetic machinery in rod cells of the retina to express heterologous G-protein-coupled receptors (GPCRs) in a pharmacologically functional form.

View Article and Find Full Text PDF

Thiazolones with an exo-norbornylamine at the 2-position and an isopropyl group on the 5-position are potent 11beta-HSD1 inhibitors. However, the C-5 center was prone to epimerization in vitro and in vivo, forming a less potent diastereomer. A methyl group was added to the C-5 position to eliminate epimerization, leading to the discovery of (S)-2-((1S,2S,4R)-bicyclo[2.

View Article and Find Full Text PDF

Recent breakthroughs in the solution of X-ray structures for G protein-coupled receptors (GPCRs) with diffusible ligands have employed extensively mutated or recombined receptor fusion proteins heterologously expressed in conventional in vitro cell-based systems. While these advances now show that crystallization of non-rhodopsin members of this superfamily can be accomplished, the use of radically modified proteins may limit the relevance of the derived structures for precision-guided drug design. To better enable the study of native GPCR structures, we report here efforts to engineer an in vivo expression system that harnesses the photoreceptor system of the retina to express heterologous GPCRs with native human sequences in a biochemically homogeneous and pharmacologically functional conformation.

View Article and Find Full Text PDF

11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has attracted considerable attention during the past few years as a potential target for the treatment of diseases associated with metabolic syndrome. In our ongoing work on 11beta-HSD1 inhibitors, a series of new 2-amino-1,3-thiazol-4(5 H)-ones were explored. By inserting various cycloalkylamines at the 2-position and alkyl groups or spirocycloalkyl groups at the 5-position of the thiazolone, several potent 11beta-HSD1 inhibitors were identified.

View Article and Find Full Text PDF

A series of 2-anilinothiazolones were prepared as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The most potent compounds contained a 2-chloro or 2-fluoro group on the aniline ring with an isopropyl substituent on the 5-position of the thiazolone ring (compounds 2 and 3, respectively). The binding mode was determined through the X-ray co-crystal structure of the enzyme with compound 3.

View Article and Find Full Text PDF

Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina.

View Article and Find Full Text PDF

Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-alpha subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response.

View Article and Find Full Text PDF

11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of 11-dehydrocorticosterone to its active form corticosterone in rodents (or cortisone to cortisol in humans). The reductive reaction of the 11-keto to 11-hydroxyl is the pivotal switch in the activation of glucocorticoids. An excess of active glucocorticoids has been shown to play a key role in metabolic disorders such as diabetes and obesity.

View Article and Find Full Text PDF

A series of (4-piperidinylphenyl)aminoethyl amides based on dipeptide anilines were synthesized and tested against cathepsin K, cathepsin L and cathepsin B. These new non-covalent inhibitors exhibited single-digit nM inhibition of the cysteine proteases. Compounds 3 and 7 demonstrated potency in both mouse and human osteoclast resorption assays.

View Article and Find Full Text PDF

Microprobe analysis of vaginal epithelial cells shed during the estrous cycle of the rat was done to determine cellular elements present in successive stages: pro-estrus, estrus, and post-estrus. Smears of vaginal contents were placed on carbon planchettes, fixed by freeze-drying, and examined in a scanning microscope with an energy dispersive spectrometer. Concentrations of Na, Mg, P, S, Cl, K, and Ca were calculated (mmol/kg dry weight) and analyzed statistically.

View Article and Find Full Text PDF

A versatile route for the synthesis of homochiral alpha-ketoamide analogues of amino acids is described. Incorporation of this functionality into peptide sequences using either solution or solid-phase chemistry resulted in potent inhibitors of the Hepatitis C Virus NS3 proteinase.

View Article and Find Full Text PDF