Publications by authors named "Steven Jm Jones"

Background: Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required.

Methods: Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types.

View Article and Find Full Text PDF

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented.

View Article and Find Full Text PDF

In this study, we evaluate the impact of whole genome and transcriptome analysis (WGTA) on predictive molecular profiling and histologic diagnosis in a cohort of advanced malignancies. WGTA was used to generate reports including molecular alterations and site/tissue of origin prediction. Two reviewers analyzed genomic reports, clinical history, and tumor pathology.

View Article and Find Full Text PDF

The color variation of hematoxylin and eosin (H&E)-stained tissues has presented a challenge for applications of artificial intelligence (AI) in digital pathology. Many color normalization algorithms have been developed in recent years in order to reduce the color variation between H&E images. However, previous efforts in benchmarking these algorithms have produced conflicting results and none have sufficiently assessed the efficacy of the various color normalization methods for improving diagnostic performance of AI systems.

View Article and Find Full Text PDF

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks.

View Article and Find Full Text PDF

Deep learning-based computer vision methods have recently made remarkable breakthroughs in the analysis and classification of cancer pathology images. However, there has been relatively little investigation of the utility of deep neural networks to synthesize medical images. In this study, we evaluated the efficacy of generative adversarial networks to synthesize high-resolution pathology images of 10 histological types of cancer, including five cancer types from The Cancer Genome Atlas and the five major histological subtypes of ovarian carcinoma.

View Article and Find Full Text PDF

To provide a comprehensive understanding of gene regulatory networks in the developing human brain and a foundation for interpreting pathogenic deregulation. We generated reference epigenomes and transcriptomes of dissected brain regions and primary neural progenitor cells (NPCs) derived from cortical and ganglionic eminence tissues of four normal human fetuses. Integration of these data across developmental stages revealed a directional increase in active regulatory states, transcription factor activities and gene transcription with developmental stage.

View Article and Find Full Text PDF

Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations.

View Article and Find Full Text PDF

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB).

View Article and Find Full Text PDF

Background: Adenocarcinomas of both the gastroesophageal junction and stomach are molecularly complex, but differ with respect to epidemiology, etiology and survival. There are few data directly comparing the frequencies of single nucleotide mutations in cancer-related genes between the two sites. Sequencing of targeted gene panels may be useful in uncovering multiple genomic aberrations using a single test.

View Article and Find Full Text PDF

High-throughput transcriptome sequencing allows identification of cancer-related changes that occur at the stages of transcription, pre-messenger RNA (mRNA), and splicing. In the current study, we devised a pipeline to predict novel alternative splicing (AS) variants from high-throughput transcriptome sequencing data and applied it to large sets of tumor transcriptomes from The Cancer Genome Atlas (TCGA). We identified two novel tumor-associated splice variants of matriptase, a known cancer-associated gene, in the transcriptome data from epithelial-derived tumors but not normal tissue.

View Article and Find Full Text PDF

Background: We undertook genetic analysis of three affected families to identify the cause of dominantly-inherited CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome.

Methods: We used whole-exome sequencing to analyze two families affected with CAPOS syndrome, including the original family reported in 1996, and Sanger sequencing to assess familial segregation of rare variants identified in the probands and in a third, apparently unrelated family with CAPOS syndrome.

Results: We found an identical heterozygous missense mutation, c.

View Article and Find Full Text PDF

Background: In mouse embryonic stem cells (mESCs), transcriptional silencing of numerous class I and II endogenous retroviruses (ERVs), including IAP, ETn and MMERVK10C, is dependent upon the H3K9 methyltransferase (KMTase) SETDB1/ESET and its binding partner KAP1/TRIM28. In contrast, the H3K9 KMTases G9a and GLP and HP1 proteins are dispensable for this process. Intriguingly, MERVL retroelements are actively transcribed exclusively in the two-cell (2C) embryo, but the molecular basis of silencing of these class III ERVs at later developmental stages has not been systematically addressed.

View Article and Find Full Text PDF

Background: The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones.

View Article and Find Full Text PDF

Human diseases can be caused by complex mechanisms involving aberrations in numerous proteins and pathways. With recent advances in genomics, elucidating the molecular basis of disease on a personalized level has become an attainable goal. In many cases, relevant molecular targets will be identified for which approved drugs already exist, and the potential repositioning of these drugs to a new indication can be investigated.

View Article and Find Full Text PDF

Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora.

View Article and Find Full Text PDF

Linkage analysis with subsequent candidate gene sequencing is typically used to diagnose novel inherited syndromes. It is now possible to expedite diagnosis through the sequencing of all coding regions of the genome (the exome) or full genomes. We sequenced the exomes of four members of a family presenting with spondylo-epiphyseal dysplasia and retinitis pigmentosa and identified a six-base-pair (6-bp) deletion in GNPTG, the gene implicated in mucolipidosis type IIIγ.

View Article and Find Full Text PDF

Mutations in the genome of a normal cell can affect the function of its many genes and pathways. These alterations could eventually transform the cell from a normal to a malignant state by allowing an uncontrolled proliferation of the cell and formation of a cancer tumor. Each tumor in an individual patient can have hundreds of mutated genes and perturbed pathways.

View Article and Find Full Text PDF

Background: A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension.

View Article and Find Full Text PDF

Background: Adenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.

Results: In the pre-treatment tumor we identified 7,629 genes within regions of copy number gain.

View Article and Find Full Text PDF

Sequencing-by-synthesis technologies can reduce the cost of generating de novo genome assemblies. We report a method for assembling draft genome sequences of eukaryotic organisms that integrates sequence information from different sources, and demonstrate its effectiveness by assembling an approximately 32.5 Mb draft genome sequence for the forest pathogen Grosmannia clavigera, an ascomycete fungus.

View Article and Find Full Text PDF

Background: Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries.

View Article and Find Full Text PDF