Monitoring body temperature and energy expenditure in freely-moving laboratory mice remains a powerful methodology used widely across a variety of disciplines-including circadian biology, sleep research, metabolic phenotyping, and the study of body temperature regulation. Some of the most pronounced changes in body temperature are observed when small heterothermic species reduce their body temperature during daily torpor. Daily torpor is an energy saving strategy characterized by dramatic reductions in body temperature employed by mice and other species when challenged to meet energetic demands.
View Article and Find Full Text PDFMus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset.
View Article and Find Full Text PDFAlternate day fasting (ADF) induces weight loss and improves various markers of health in rodents and humans. However, it is unclear whether the benefits of ADF are derived from the lower caloric intake of ADF or from the 24-h fasting period. Therefore, this study directly compared selected markers for health - such as glucose control, body weight, liver triglycerides, T cell frequencies, and others - in high-fat (60% calories from fat) diet-induced obese mice subjected to either ADF or caloric restriction (CR).
View Article and Find Full Text PDFUnder relatively cool ambient temperatures and a caloric deficit, mice will undergo daily torpor - a short-term regulated reduction in metabolic rate with a concomitant drop in body temperature. Mice can alternatively achieve metabolic savings by utilizing behavioral changes, such as seeking a warmer environment. However, there is a lack of knowledge about the behavioral interaction between torpor utilization and thermotaxis.
View Article and Find Full Text PDF2,3,5-trimethyl-3-thiazoline (TMT) is a chemical compound that is extracted from red fox urine and can be used to artificially simulate the presence of a predator. The purpose of this study was to test the hypothesis that TMT would block entry into torpor in the calorically restricted C57Bl/6 mouse. We first demonstrated that TMT induced fear in the mouse.
View Article and Find Full Text PDFUnder conditions of scarce food availability and cool ambient temperature, the mouse (Mus Musculus) enters into torpor, a state of transient metabolic suppression mediated in part by the autonomic nervous system. Hypothalamic orexins are involved in the coordination of behaviors and autonomic function. We tested whether orexins are necessary for the coordinated changes in physiological variables, which underlie torpor and represent its physiological signature.
View Article and Find Full Text PDFArtificial sweeteners have been shown to induce glucose intolerance by altering the gut microbiota; however, little is known about the effect of stevia. Here, we investigate whether stevia supplementation induces glucose intolerance by altering the gut microbiota in mice, hypothesizing that stevia would correct high fat diet-induced glucose intolerance and alter the gut microbiota. Mice were split into four treatment groups: low fat, high fat, high fat + saccharin and high fat + stevia.
View Article and Find Full Text PDFThe diving response is a coordinated physiological response to submersion under water and has been documented amongst all mammals tested to date. The physiological response consists of three primary reflexes: an immediate bradycardia, apnea, and selective constriction of peripheral blood vessels. We hypothesized that mice would exhibit a diving response upon voluntary submersion into water typically seen in other mammals.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2019
Alternate-day fasting (ADF) is effective for weight loss and increases insulin sensitivity in diet-induced obese rodents. However, the efficacy of ADF in genetic models of obesity has not been comprehensively studied. Mice that are deficient in leptin ( mice) are obese, diabetic, and prone to deep bouts of torpor when fasted.
View Article and Find Full Text PDFAn increase in the beat-to-beat variability of heart rate (HRV) is a robust marker of enhanced parasympathetic activity and of a calm and relaxed state. The purpose of this laboratory activity was to introduce the concept of HRV to our students, while having them address a novel question of whether two yogic breathing techniques, namely alternate nostril breathing (ANB) and standard deep breathing (DB), impact the SD of instantaneous heart rate (SDHR), a measure of HRV. Fifty-five undergraduates enrolled in a physiology course designed for nonscience majors were tasked with analyzing HR and SDHR from electrocardiograms recorded during normal breathing, DB, and ANB.
View Article and Find Full Text PDFMouse vivaria are typically maintained at an ambient temperature (T) of 20-26 °C which is comfortable for human researchers. However, as this T is well below the mouse thermoneutral zone (TNZ) of 30-32 °C, typical vivarium temperatures result in cold stress for mice. Recently, a cage has been developed that provides variable cage floor heating, allowing mice to behaviorally regulate body temperature through thermotaxis.
View Article and Find Full Text PDFThe lateral habenula (LHb), a nucleus involved in the response to salient, especially adverse, environmental events, is implicated in brown adipose tissue (BAT) thermogenesis caused by these events. LHb-elicited thermogenesis involves a neural pathway to the lower brain stem sympathetic control center in the medullary raphé. There are no direct connections from the LHb to the medullary raphé.
View Article and Find Full Text PDFMany small mammals, such as the laboratory mouse, utilize the hypometabolic state of torpor in response to caloric restriction. The signals that relay the lack of fuel to initiate a bout of torpor are not known. Because the mouse will only enter a torpid state when calorically challenged, it may be that one of the inputs for initiation into a bout of torpor is the lack of the primary fuel (glucose) used to power brain metabolism in the mouse.
View Article and Find Full Text PDFCurrent understanding of the pathogenesis of the familial form of amyotrophic lateral sclerosis has been aided by the study of transgenic mice that over-express mutated forms of the human CuZn-superoxide dismutase (SOD1) gene. While mutant SOD1 in motor neurons determines disease onset, other non-cell autonomous factors are critical for disease progression, and altered energy metabolism has been implicated as a contributing factor. Since most energy expended by laboratory mice is utilized to defend body temperature (T), we analyzed thermoregulation in transgenic mice carrying the G93A mutation of the human SOD1 gene, using implantable temperature data loggers to continuously record T for up to 85 days.
View Article and Find Full Text PDFDaily torpor is used by small mammals to reduce daily energy expenditure in response to energetic challenges. Optimizing the timing of daily torpor allows mammals to maximize its energetic benefits and, accordingly, torpor typically occurs in the late night and early morning in most species. However, the regulatory mechanisms underlying such temporal regulation have not been elucidated.
View Article and Find Full Text PDFThis review compares two states that lower energy expenditure: non-rapid eye movement (NREM) sleep and torpor. Knowledge on mechanisms common to these states, and particularly on the role of adenosine in NREM sleep, may ultimately open the possibility of inducing a synthetic torpor-like state in humans for medical applications and long-term space travel. To achieve this goal, it will be important, in perspective, to extend the study to other hypometabolic states, which, unlike torpor, can also be experienced by humans.
View Article and Find Full Text PDFCircadian disruption as a result of shift work is associated with adverse metabolic consequences. Internal desynchrony between the phase of the suprachiasmatic nuclei (SCN) and peripheral clocks is widely believed to be a major factor contributing to these adverse consequences, but this hypothesis has never been tested directly. A GABAergic Cre driver combined with conditional casein kinase mutations ( ) was used to lengthen the endogenous circadian period in GABAergic neurons, including the SCN, but not in peripheral tissues, to create a Discordant mouse model.
View Article and Find Full Text PDFThe eastern pygmy possum () is a small marsupial that can express spontaneous short bouts of torpor, as well as multi-day bouts of deep hibernation. To examine heart rate () control at various stages of torpor in a marsupial hibernator, and to see whether variability differs from that of deep placental hibernators, we used radiotelemetry to measure ECG and body temperature () while measuring the rate of O consumption and ventilation. and O consumption rate during euthermia were at a minimum (321±34 beats min, 0.
View Article and Find Full Text PDFMice enter bouts of daily torpor, drastically reducing metabolic rate, core body temperature (T ), and heart rate (HR), in response to reduced caloric intake. Because central adenosine activation has been shown to induce a torpor-like state in the arctic ground squirrel, and blocking the adenosine-1 (A) receptor prevents daily torpor, we hypothesized that central activation of the A adenosine receptors would induce a bout of natural torpor in mice. To test the hypothesis, mice were subjected to four different hypothermia bouts: natural torpor, forced hypothermia (FH), isoflurane-anesthesia, and an intracerebroventricular injection of the selective A receptor agonist Ncyclohexyladenosine (CHA).
View Article and Find Full Text PDFA major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was to compare the EEG/EMG-based and the WBP-based scoring of wake-sleep states of mice, and provide formal guidelines for the latter.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2015
Huddling and nest building are two methods of behavioral thermoregulation used by mice under cold stress. In the laboratory, mice are typically housed at an ambient temperature (Ta) of 20°C, well below the lower end of their thermoneutral zone. We tested the hypothesis that the thermoregulatory benefits of huddling and nest building at a Ta of 20°C would ameliorate this cold stress compared with being singly housed at 20°C as assessed by heart rate (HR), blood pressure (BP), triiodothyronine (T3), brown adipose (BAT) expression of Elovl3 mRNA, and BAT lipid content.
View Article and Find Full Text PDFHigh-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2014
Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice.
View Article and Find Full Text PDFTwo hormones from the gastrointestinal tract, glucagon and oxyntomodulin (OXM), vigorously elevate the intrinsic heart rate (IHR) of mice. We have previously shown that OXM influences murine heart rate (HR) independent of the glucagon-like peptide 1 (GLP-1) receptor. Here, we demonstrate using radiotelemetry in mice deficient in the glucagon receptor (Gcgr -/-) that both OXM and glucagon require the glucagon receptor for their chronotropic effects on the heart.
View Article and Find Full Text PDF