Background: Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction.
View Article and Find Full Text PDFAdult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TG) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TG, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TG was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TG vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TG did not differ from WT.
View Article and Find Full Text PDFBackground: The sinoatrial node (SAN) of the heart produces rhythmic action potentials, generated via calcium signaling within and among pacemaker cells. Our previous work has described the SAN as composed of a hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4)-expressing pacemaker cell meshwork, which merges with a network of connexin 43/F-actin cells. It is also known that sympathetic and parasympathetic innervation create an autonomic plexus in the SAN that modulates heart rate and rhythm.
View Article and Find Full Text PDFData-driven research led by computational systems biology methods, encompassing bioinformatics of multiomics datasets and mathematical modeling, are critical for discovery. Herein, we describe a multiomics (metabolomics-fluxomics) approach as applied to heart function in diabetes. The methodology presented has general applicability and enables the quantification of the fluxome or set of metabolic fluxes from cytoplasmic and mitochondrial compartments in central catabolic pathways of glucose and fatty acids.
View Article and Find Full Text PDFATP synthase (FF) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian FF-reconstituted proteoliposomes and isolated mitochondria, we show FF can utilize both ΔΨ-driven H- and K-transport to synthesize ATP under physiological pH = 7.2 and K = 140 mEq/L conditions.
View Article and Find Full Text PDFDonors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO, HNO protection requires PKCε translocation to mitochondria and K channels activation.
View Article and Find Full Text PDFWe demonstrated that ATP synthase serves the of a primary mitochondrial K "uniporter," i.e., the primary way for K to enter mitochondria.
View Article and Find Full Text PDFATP synthase (FF) is a rotary molecular engine that harnesses energy from electrochemical-gradients across the inner mitochondrial membrane for ATP synthesis. Despite the accepted tenet that FF transports exclusively H, our laboratory has demonstrated that, in addition to H, FF ATP synthase transports a significant fraction of ΔΨ-driven charge as K to synthesize ATP. Herein, we utilize a computational modeling approach as a proof of principle of the feasibility of the core mechanism underlying the enhanced ATP synthesis, and to explore its bioenergetic consequences.
View Article and Find Full Text PDFHeart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na and Ca control mechanisms during the disease progression and their consequences on mitochondrial Ca homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics.
View Article and Find Full Text PDFAppropriate substrate selection between fats and glucose is associated with the success of interventions that maintain health such as exercise or caloric restriction, or with the severity of diseases such as diabetes or other metabolic disorders. Although the interaction and mutual inhibition between glucose and fatty-acids (FAs) catabolism has been studied for decades, a quantitative and integrated understanding of the control and regulation of substrate selection through central catabolic pathways is lacking. We addressed this gap here using a computational model representing cardiomyocyte catabolism encompassing glucose (Glc) utilization, pyruvate transport into mitochondria and oxidation in the tricarboxylic acid (TCA) cycle, β-oxidation of palmitate (Palm), oxidative phosphorylation, ion transport, pH regulation, and ROS generation and scavenging in cytoplasmic and mitochondrial compartments.
View Article and Find Full Text PDFKey Points: Hearts from type 2 diabetic animals display perturbations in excitation-contraction coupling, impairing myocyte contractility and delaying relaxation, along with altered substrate consumption patterns. Under high glucose and β-adrenergic stimulation conditions, palmitate can, at least in part, offset left ventricle (LV) dysfunction in hearts from diabetic mice, improving contractility and relaxation while restoring coronary perfusion pressure. Fluxome calculations of central catabolism in diabetic hearts show that, in the presence of palmitate, there is a metabolic remodelling involving tricarboxylic acid cycle, polyol and pentose phosphate pathways, leading to improved redox balance in cytoplasmic and mitochondrial compartments.
View Article and Find Full Text PDFMitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
The advent of "big data" in biology (e.g., genomics, proteomics, metabolomics), holding the promise to reveal the nature of the formidable complexity in cellular and organ makeup and function, has highlighted the compelling need for analytical and integrative computational methods to interpret and make sense of the patterns and changes in those complex networks.
View Article and Find Full Text PDFThe mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III and IV) is an essential component in the process of energy storage during oxidative phosphorylation. Together with the proton gradient (ΔpH), ΔΨm forms the transmembrane potential of hydrogen ions which is harnessed to make ATP. The levels of ΔΨm and ATP in the cell are kept relatively stable although there are limited fluctuations of both these factors that can occur reflecting normal physiological activity.
View Article and Find Full Text PDFLipids are main fuels for cellular energy and mitochondria their major oxidation site. Yet unknown is to what extent the fuel role of lipids is influenced by their uncoupling effects, and how this affects mitochondrial energetics, redox balance and the emission of reactive oxygen species (ROS). Employing a combined experimental-computational approach, we comparatively analyze β-oxidation of palmitoyl CoA (PCoA) in isolated heart mitochondria from Sham and streptozotocin (STZ)-induced type 1 diabetic (T1DM) guinea pigs (GPs).
View Article and Find Full Text PDFConstitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types.
View Article and Find Full Text PDFFood nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation.
View Article and Find Full Text PDFBackground: Mitochondrial dysfunction has long been considered a major contributor to aging and age-related diseases. Harman's Mitochondrial Free Radical Theory of Aging postulated that somatic mitochondrial DNA mutations that accumulate over the life span cause excessive production of reactive oxygen species that damage macromolecules and impair cell and tissue function. Indeed, studies have shown that maximal oxidative capacity declines with age while reactive oxygen species production increases.
View Article and Find Full Text PDFByproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis.
View Article and Find Full Text PDFThe sinoatrial node, whose cells (sinoatrial node cells [SANCs]) generate rhythmic action potentials, is the primary pacemaker of the heart. During diastole, calcium released from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) interacts with membrane currents to control the rate of the heartbeat. This "calcium clock" takes the form of stochastic, partially periodic, localized calcium release (LCR) events that propagate, wave-like, for limited distances.
View Article and Find Full Text PDFA reduced sinoatrial node (SAN) functional reserve underlies the age-associated decline in heart rate acceleration in response to stress. SAN cell function involves an oscillatory coupled-clock system: the sarcoplasmic reticulum (SR), a Ca(2+) clock, and the electrogenic-sarcolemmal membrane clock. Ca(2+)-activated-calmodulin-adenylyl cyclase/CaMKII-cAMP/PKA-Ca(2+) signaling regulated by phosphodiesterase activity drives SAN cells automaticity.
View Article and Find Full Text PDFTrends Endocrinol Metab
October 2013
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial.
View Article and Find Full Text PDFRationale: In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis.
View Article and Find Full Text PDF