Publications by authors named "Steven J P McInnes"

Bioactive scaffolds fabricated from a combination of organic and inorganic biomaterials are a promising approach for addressing defects in bone tissue engineering. In the present study, a self-crosslinked nanocomposite hydrogel, composed of gelatin/aldehyde-modified xanthan (Gel-AXG) is successfully developed by varying concentrations of porous silicon nanoparticles (PSiNPs). The effect of PSiNPs incorporation on physical, mechanical, and biological performance of the nanocomposite hydrogel is evaluated.

View Article and Find Full Text PDF

Integrating nanoparticles (NPs) as a smart and targeted tool for drug delivery with dissolving microneedle (DMN) patch, the non-invasive device for drug delivery, is a promising for future therapeutic delivery applications. Liraglutide (Lira) encapsulation in poly (lactic-co-glycolic acid) (PLGA) NPs provides a sustained release of Lira to 15 days in a biphasic profile which 80% of released content happens in the first 8 days. Embedding such sustained release NPs in the DMN comprising poly vinyl pyrrolidone (PVP) 50% w/v, eliminates the need for Lira subcutaneous injection.

View Article and Find Full Text PDF

As a non-invasive method of local and systemic drug delivery, the administration of active pharmaceutical ingredients (APIs) the pulmonary route represents an ideal approach for the therapeutic treatment of pulmonary diseases. The pulmonary route provides a number of advantages, including the rapid absorption which results from a high level of vascularisation over a large surface area and the successful avoidance of first-pass metabolism. Aerosolization of nanoparticles (NPs) is presently under extensive investigation and exhibits a high potential for targeted delivery of therapeutic agents for the treatment of a wide range of diseases.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth.

View Article and Find Full Text PDF

Transdermal drug delivery (TDD) is an alternative method of drug administration for drugs whose delivery by conventional oral, topical, intravenous and intramuscular methods is of limited efficacy. Recent advances in TDD involve the use of nanoparticles (NPs), which exhibit a great potential to enhance drug permeation across the skin. NPs can also provide controlled release, the ability to deliver both hydrophilic and hydrophobic drugs and reduce side effects, and when used in a TDD method they are also non-invasive.

View Article and Find Full Text PDF

Background: Treatment of neurological diseases using systemic and non-surgical techniques presents a significant challenge in medicine. This challenge is chiefly associated with the condensation and coherence of the brain tissue.

Methods: The coherence structure of the brain is due to the presence of the blood-brain barrier (BBB), which consists of a continuous layer of capillary endothelial cells.

View Article and Find Full Text PDF

Key Points: Substrate restriction during critical developmental windows of gestation programmes offspring for a predisposition towards cardiovascular disease in adult life. This study aimed to determine the effect of maternal resveratrol (RSV) treatment in an animal model in which chronic fetal catheterisation is possible and the timing of organ maturation reflects that of the human. Maternal RSV treatment increased uterine artery blood flow, fetal oxygenation and fetal weight.

View Article and Find Full Text PDF

This work focuses on an evaluation of novel composites of porous silicon (pSi) with the biocompatible polymer ε-polycaprolactone (PCL) for drug delivery and tissue engineering applications. The degradation behavior of the composites in terms of their morphology along with the effect of pSi on polymer degradation was monitored. PSi particles loaded with the drug camptothecin (CPT) were physically embedded into PCL films formed from electrospun PCL fiber sheets.

View Article and Find Full Text PDF

This report describes the use of an electrospun composite of poly(ε-caprolactone) (PCL) fibers and porous silicon (pSi) nanoparticles (NPs) as an effective system for the tunable delivery of camptothecin (CPT), a small therapeutic molecule. Both materials are biodegradable, abundant, low-cost, and most importantly, have no known cytotoxic effects. The composites were treated with and without sodium hydroxide (NaOH) to investigate the wettability of the porous network for drug release and cell viability measurements.

View Article and Find Full Text PDF

Dendritic cells (DC) are the most potent antigen-presenting cells and are fundamental for the establishment of transplant tolerance. The Dendritic Cell-Specific Intracellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN; CD209) receptor provides a target for dendritic cell therapy. Biodegradable and high-surface area porous silicon (pSi) nanoparticles displaying anti-DC-SIGN antibodies and loaded with the immunosuppressant rapamycin (Sirolimus) serve as a fit-for-purpose platform to target and modify DC.

View Article and Find Full Text PDF

Continuing our research efforts in developing mesoporous silicon nanoparticle-based biomaterials for cancer therapy, we employed here porous silicon nanoparticles as a nanocarrier to deliver contrast agents to diseased cells. Nanoconfinement of small molecule Gd-chelates (L1-Gd) enhanced the T contrast dramatically compared to distinct Gd-chelate (L1-Gd) by virtue of its slow tumbling rate, increased number of bound water molecules, and their occupancy time. The newly synthesized Gd-chelate (L1-Gd) was covalently grafted on silicon nanostructures and conjugated to an antibody specific for epidermal growth factor receptor (EGFR) via a hydrazone linkage.

View Article and Find Full Text PDF

Dysfunction of limbal stem cells or their niche can result in painful, potentially sight-threatening ocular surface disease. We examined the utility of surface-modified porous-silicon (pSi) membranes as a scaffold for the transfer of oral mucosal cells to the eye. Male-origin rat oral mucosal epithelial cells were grown on pSi coated with collagen-IV and vitronectin, and characterised by immunocytochemistry.

View Article and Find Full Text PDF

Porous silicon (pSi) engineered by electrochemical etching has been used as a drug delivery vehicle to address the intrinsic limitations of traditional therapeutics. Biodegradability, biocompatibility, and optoelectronic properties make pSi a unique candidate for developing biomaterials for theranostics and photodynamic therapies. This review presents an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting pSi's growing potential.

View Article and Find Full Text PDF

Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents.

View Article and Find Full Text PDF

Porous silicon microparticles (pSi MPs) functionalized with fluorescent dyes (lissamine and carboxy-5-fluorescein) and intrinsically luminescent pSi MPs were explored as novel fingerprint dusting powders. The versatility of luminescent pSi MPs is demonstrated through time-gated imaging of their long-lived (lifetime>28 μs) near-IR emission, and mass spectrometry analysis of fingerprints dusted with luminescent pSi MPs to provide further information on exogenous small molecules present in latent fingerprints.

View Article and Find Full Text PDF

Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck".

View Article and Find Full Text PDF

This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.

View Article and Find Full Text PDF

The proinflammatory cytokine, tumor necrosis factor-α (TNF-α), is elevated in several diseases such as uveitis, rheumatoid arthritis and non-healing chronic wounds. Adding Infliximab, a chimeric IgG1 monoclonal antibody raised against TNF-α, to chronic wound fluid can neutralise human TNF-α, thereby providing a potential therapeutic option for chronic wound healing. However, to avoid the need for repeated application in a clinical setting, and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required.

View Article and Find Full Text PDF

In this paper, we demonstrate the detection of europium-complex-labeled streptavidin in a porous silicon microcavity (pSiMC) via luminescence enhancement. The pSiMC platform was modified for optimized luminescence enhancement which encompassed changing the pore size of the microcavity to ensure molecular infiltration and adjusting the optical quality of the microcavity. Characterization of the optimized surface was performed by infrared spectroscopy, interferometric reflectance spectroscopy and luminescence measurements.

View Article and Find Full Text PDF

A porous silicon-based optical DNA sensor is described herein, which enables rapid DNA detection. The DNA sensor relies on the specificity of the DNA base pairing in conjunction with an interferometric optical signal amplification step based on polymer formation within the porous silicon layer to detect the DNA targets in a highly selective fashion. We demonstrate that it is possible to discriminate between DNA strands exhibiting even a single nucleotide mismatch using this sensor.

View Article and Find Full Text PDF

We describe the preparation of several types of porous silicon (pSi) microparticles as supports for the solid-phase synthesis of oligonucleotides. The first of these supports facilitates oligonucleotide release from the nanostructured support during the oligonucleotide deprotection step, while the second type of support is able to withstand the cleavage and deprotection of the oligonucleotides post synthesis and subsequently dissolve at physiological conditions (pH = 7.4, 37°C), slowly releasing the oligonucleotides.

View Article and Find Full Text PDF

We describe a pH responsive drug delivery system which was fabricated using a novel approach to functionalize biodegradeable porous silicon (pSi) by initiated chemical vapor deposition (iCVD). The assembly involved first loading a model drug (camptothecin, CPT) into the pores of the pSi matrix followed by capping the pores with a thin pH responsive copolymer film of poly(methacrylic acid-co-ethylene dimethacrylate) (p(MAA-co-EDMA)) via iCVD. Release of CPT from uncoated pSi was identical in two buffers at pH 1.

View Article and Find Full Text PDF

Aims: Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds.

Materials & Methods: In this work, three different pSi and PLLA composite formats were prepared.

View Article and Find Full Text PDF

In this report, we employ surface-initiated atom transfer radical polymerization (SI-ATRP) to graft a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), of controlled thickness from porous silicon (pSi) films to produce a stimulus-responsive inorganic-organic composite material. The optical properties of this material are studied using interferometric reflectance spectroscopy (IRS) above and below the lower critical solution temperature (LCST) of the PNIPAM graft polymer with regard to variation of pore sizes and thickness of the pSi layer (using discrete samples and pSi gradients) and also the thickness of the PNIPAM coatings. Our investigations of the composite's thermal switching properties show that pore size, pSi layer thickness, and PNIPAM coating thickness critically influence the material's thermoresponsiveness.

View Article and Find Full Text PDF

Silicon and its oxides are widely used in biomaterials research, tissue engineering and drug delivery. These materials are highly biocompatible, easily surface functionalized, degrade into nontoxic silicic acid and can be processed into various forms such as micro- and nano-particles, monoliths, membranes and micromachined structures. The large surface area of porous forms of silicon and silica (up to 1200 m2/g) permits high drug loadings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongmi1ipvk8srcmvndm42k87tndfip13d7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once