Objectives: The impact and risk of SARS-CoV-2 transmission from asymptomatic and presymptomatic hosts remains an open question. This study measured the secondary attack rates (SARs) and relative risk (RR) of SARS-CoV-2 transmission from asymptomatic and presymptomatic index cases as compared with symptomatic index cases.
Methods: We used COVID-19 test results, daily health check reports, and contact tracing data to measure SARs and corresponding RRs among close contacts of index cases in a cohort of 12 960 young adults at the University of Notre Dame in Indiana for 103 days, from August 10 to November 20, 2020.
Terrorism is a major problem worldwide, causing thousands of fatalities and billions of dollars in damage every year. To address this threat, we propose a novel feature representation method and evaluate machine learning models that learn from localized news data in order to predict whether a terrorist attack will occur on a given calendar date and in a given state. The best model (a Random Forest aided by a novel variable-length moving average method) achieved area under the receiver operating characteristic (AUROC) of ≥ 0.
View Article and Find Full Text PDFCOVID-19 remains a global threat in the face of emerging SARS-CoV-2 variants and gaps in vaccine administration and availability. In this study, we analyze a data-driven COVID-19 testing program implemented at a mid-sized university, which utilized two simple, diverse, and easily interpretable machine learning models to predict which students were at elevated risk and should be tested. The program produced a positivity rate of 0.
View Article and Find Full Text PDF