Publications by authors named "Steven J Byrnes"

We report the design and operation of a surface-emitting surface acoustic wave (SAW) acousto-optical modulator which behaves as a cm-scale linear hologram in response to an applied electronic waveform. The modulator is formed by an optical waveguide, transducer, and out-coupling surface grating on a 1 mm-thick lithium niobate substrate. We demonstrate the ability to load and illuminate a 9-region linear hologram into the modulator's 8 mm-long interaction region using applied waveforms of 280-320 MHz.

View Article and Find Full Text PDF

Meta-lenses based on flat optics enabled a fundamental shift in lens production-providing an easier manufacturing process with an increase in lens profile precision and a reduction in size and weight. Here we present an analytical approach to correct spherical aberrations caused by light propagation through the substrate by adding a substrate-corrected phase profile, which differs from the original hyperbolic one. A meta-lens encoding the new phase profile would yield diffraction-limited focusing and an increase of up to 0.

View Article and Find Full Text PDF

In a planar optical cavity, the resonance frequencies increase as a function of in-plane wavevector according to a standard textbook formula. This has well-known consequences in many different areas of optics, from the shifts of etalon peaks at non-normal angles, to the properties of transverse modes in laser diodes, to the effective mass of microcavity photons, and so on. However, this standard formula is valid only when the reflection phase of each cavity mirror is approximately independent of angle.

View Article and Find Full Text PDF

A metasurface lens (meta-lens) bends light using nanostructures on a flat surface. Macroscopic meta-lenses (mm- to cm-scale diameter) have been quite difficult to simulate and optimize, due to the large area, the lack of periodicity, and the billions of adjustable parameters. We describe a method for designing a large-area meta-lens that allows not only prediction of the efficiency and far-field, but also optimization of the shape and position of each individual nanostructure, with a computational cost that is almost independent of the lens size.

View Article and Find Full Text PDF

It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation).

View Article and Find Full Text PDF