Publications by authors named "Steven I Higgins"

Ecologists are being challenged to predict how ecosystems will respond to climate changes. According to the Multi-Colored World (MCW) hypothesis, climate impacts may not manifest because consumers such as fire and herbivory can override the influence of climate on ecosystem state. One MCW interpretation is that climate determinism fails because alternative ecosystem states (AES) are possible at some locations in climate space.

View Article and Find Full Text PDF

Forecasting the risks of climate change for species and ecosystems is necessary for developing targeted conservation strategies. Previous risk assessments mapped the exposure of the global land surface to changes in climate. However, this procedure is unlikely to robustly identify priority areas for conservation actions because nonlinear physiological responses and colimitation processes ensure that ecological changes will not map perfectly to the forecast climatic changes.

View Article and Find Full Text PDF

Increasing rainfall variability is widely expected under future climate change scenarios. How will savanna trees and grasses be affected by growing season dry spells and altered seasonality and how tightly coupled are tree-grass phenologies with rainfall? We measured tree and grass responses to growing season dry spells and dry season rainfall. We also tested whether the phenologies of 17 deciduous woody species and the Soil Adjusted Vegetation Index of grasses were related to rainfall between 2019 and 2023.

View Article and Find Full Text PDF

One of the foundational premises of ecology is that climate determines ecosystems. This has been challenged by alternative ecosystem state models, which illustrate that internal ecosystem dynamics acting on the initial ecosystem state can overwhelm the influence of climate, and by observations suggesting that climate cannot reliably discriminate forest and savanna ecosystem types. Using a novel phytoclimatic transform, which estimates the ability of climate to support different types of plants, we show that climatic suitability for evergreen trees and C4 grasses are sufficient to discriminate between forest and savanna in Africa.

View Article and Find Full Text PDF

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca.

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF

Here, we respond to Booth's criticism of our paper, "Predictive ability of a process-based versus a correlative species distribution model." Booth argues that our usage of the MaxEnt model was flawed and that the conclusions of our paper are by implication flawed. We respond by clarifying that the error Booth implies we made was not made in our analysis, and we repeat statements from the original manuscript which anticipated such criticisms.

View Article and Find Full Text PDF

A flexible use of the crassulacean acid metabolism (CAM) has been hypothesised to represent an intermediate stage along a C to full CAM evolutionary continuum, when relative contributions of C vs CAM metabolism are co-determined by evolutionary history and prevailing environmental constraints. However, evidence for such eco-evolutionary interdependencies is lacking. We studied these interdependencies for the leaf-succulent genus Drosanthemum (Aizoaceae, Southern African Succulent Karoo) by testing for relationships between leaf δ C diagnostic for CAM dependence (i.

View Article and Find Full Text PDF

Species distribution modeling is a widely used tool in many branches of ecology and evolution. Evaluations of the transferability of species distribution models-their ability to predict the distribution of species in independent data domains-are, however, rare. In this study, we contrast the transferability of a process-based and a correlative species distribution model.

View Article and Find Full Text PDF

Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high-resolution climate scenarios based on an ensemble of six general circulation models (GCMs) under two representative concentration pathways (RCPs 4.

View Article and Find Full Text PDF

Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales.

View Article and Find Full Text PDF

Biomes are constructs for organising knowledge on the structure and functioning of the world's ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global-change research, partly due to their subjective origin.

View Article and Find Full Text PDF

There are two prominent and competing hypotheses that disagree about the effect of competition on diversification processes. The first, the bounded hypothesis, suggests that species diversity is limited (bounded) by competition between species for finite ecological niche space. The second, the unbounded hypothesis, proposes that innovations associated with evolution render competition unimportant over macroevolutionary timescales.

View Article and Find Full Text PDF

C3 plants can increase nutrient uptake by increasing transpiration, which promotes the flow of water with dissolved nutrients towards the roots. However, it is not clear if this mechanism of nutrient acquisition, termed 'mass flow', also operates in C4 plants. This is an important question, as differences in mass flow capacity may affect competitive interactions between C3 and C4 species.

View Article and Find Full Text PDF

Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height.

View Article and Find Full Text PDF

The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change.

View Article and Find Full Text PDF

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass.

View Article and Find Full Text PDF

Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low.

View Article and Find Full Text PDF

Remote sensing studies suggest that savannahs are transforming into more tree-dominated states; however, progressive nitrogen limitation could potentially retard this putatively CO2-driven invasion. We analysed controls on nitrogen mineralization rates in savannah by manipulating rainfall and the cover of grass and tree elements against the backdrop of the seasonal temperature and rainfall variation. We found that the seasonal pattern of nitrogen mineralization was strongly influenced by rainfall, and that manipulative increases in rainfall could boost mineralization rates.

View Article and Find Full Text PDF

Perennial grasses are a dominant component of grasslands, and provide important ecosystem services. However, most knowledge of grasslands' functioning and production comes from plot-level studies, and drivers of individual-level production remain poorly explored. Extrapolation from existing experiments is hampered by the fact that these are mostly concentrated on even-aged cohorts, and/or on the early stages of a plant's life cycle.

View Article and Find Full Text PDF

Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts.

View Article and Find Full Text PDF

Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain.

View Article and Find Full Text PDF

Invasive species cost the global economy billions of dollars each year, but ecologists have struggled to predict the risk of an introduced species naturalizing and invading. Although carefully designed experiments are needed to fully elucidate what makes some species invasive, much can be learned from unintentional experiments involving the introduction of species beyond their native ranges. Here, we assess invasion risk by linking a physiologically based species distribution model with data on the invasive success of 749 Australian acacia and eucalypt tree species that have, over more than a century, been introduced around the world.

View Article and Find Full Text PDF

Ecologists have long sought to understand the factors controlling the structure of savanna vegetation. Using data from 2154 sites in savannas across Africa, Australia, and South America, we found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal area. However, among continents, the magnitude of these effects varied substantially, so that a single model cannot adequately represent savanna woody biomass across these regions.

View Article and Find Full Text PDF

The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session77gmgm0634tols1iom7dujnikc1jbuih): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once