Although pollination is one of the most crucial biological processes that ensures plant reproduction, its mechanisms are poorly understood. Especially in insect-mediated pollination, a pollen undergoes several attachment and detachment cycles when being transferred from anther to insect and from insect to stigma. The influence of the properties of pollen, insect and floral surfaces on the adhesion forces that mediate pollen transfer have been poorly studied.
View Article and Find Full Text PDFMammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites.
View Article and Find Full Text PDFMeasurements of Young's moduli are mostly evaluated using strong assumptions, such as sample homogeneity and isotropy. At the same time, descriptions of measurement parameters often lack detailed specifications. Many of these assumptions are, for soft hydrogels especially, not completely valid and the complexity of hydrogel microindentation demands more sophisticated experimental procedures in order to describe their elastic properties more accurately.
View Article and Find Full Text PDFPorous hydrogel scaffolds are ideal candidates for mimicking cellular microenvironments, regarding both structural and mechanical aspects. We present a novel strategy to use uniquely designed ceramic networks as templates for generating hydrogels with a network of interconnected pores in the form of microchannels. The advantages of this new approach are the high and guaranteed interconnectivity of the microchannels, as well as the possibility to produce channels with diameters smaller than 7 μm.
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
April 2018
Purpose: To test the adhesion properties of live gingival fibroblasts to three different implant abutment materials after five different cleaning procedures.
Materials And Methods: Highly polished discs of lithium disilicate (LS), zirconium dioxide (Zr), and titanium alloy (Ti) were fabricated. The specimens were cleaned by one of five different methods: steam (S), argon plasma (AP), ultrasound and disinfection (UD), ultrasound and sterilization in an autoclave (UA), or photofunctionalization with high-intensity ultraviolet light (PF).
The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii) causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A.
View Article and Find Full Text PDFIntegrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment.
View Article and Find Full Text PDFOrganotypic tissue cultures are highly promising for performing in vivo type studies in vitro. Currently, however, very limited survival times of only a few days for adult tissue often severely limit their application. Here, superhydrophilic nanostructured substrates with ideal material properties ensure tissue adhesion, essential for organotypic culture, while migration of single cells out of the tissue is hampered.
View Article and Find Full Text PDF