Publications by authors named "Steven Hoehner"

This article focuses on the problem of analytically determining the optimal placement of five points on the unit sphere {\bb S}^{2} so that the surface area of the convex hull of the points is maximized. It is shown that the optimal polyhedron has a trigonal bipyramidal structure with two vertices placed at the north and south poles and the other three vertices forming an equilateral triangle inscribed in the equator. This result confirms a conjecture of Akkiraju, who conducted a numerical search for the maximizer.

View Article and Find Full Text PDF