Publications by authors named "Steven Highfill"

Background: Chimeric antigen receptor T (CAR-T) cells have significantly advanced the treatment of cancers such as leukemia and lymphoma. Traditionally, T cells are collected from patients through leukapheresis, an expensive and potentially invasive process that requires specialized equipment and trained personnel. Although whole blood collections are much more technically straightforward, whole blood starting material has not been widely utilized for clinical CAR-T cell manufacturing, in part due to lack of manufacturing processes designed for use in a good manufacturing practice (GMP) environment.

View Article and Find Full Text PDF

Background: We discovered a novel human endogenous retrovirus (CT-RCC HERV-E) that was selectively expressed in most clear cell renal cell carcinomas (ccRCC) and served as a source of antigens for T cell-mediated killing. Here, we described the cloning of a novel T cell receptor (TCR) targeting a CT-RCC HERV-E-derived antigen specific to ccRCC and characterized antitumor activity of HERV-E TCR-transduced T cells (HERV-E T cells).

Methods: We isolated a CD8 T cell clone from a patient with immune-mediated regression of ccRCC post-allogeneic stem cell transplant that recognized the CT-RCC-1 HERV-E-derived peptide in an HLA-A11-restricted manner.

View Article and Find Full Text PDF

T cell activation is an essential step in chimeric Ag receptor (CAR) T (CAR T) cell manufacturing and is accomplished by the addition of activator reagents that trigger the TCR and provide costimulation. We explore several T cell activation reagents and examine their effects on key attributes of CAR T cell cultures, such as activation/exhaustion markers, cell expansion, gene expression, and transduction efficiency. Four distinct activators were examined, all using anti-CD3 and anti-CD28, but incorporating different mechanisms of delivery: Dynabeads (magnetic microspheres), TransAct (polymeric nanomatrix), Cloudz (alginate hydrogel), and Microbubbles (lipid membrane containing perfluorocarbon gas).

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity.

View Article and Find Full Text PDF

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown.

View Article and Find Full Text PDF

T cells expressing anti-CD19 chimeric antigen receptors (CARs) have activity against chronic lymphocytic leukemia (CLL), but complete response rates range from 18% to 29%, so improvement is needed. Peripheral blood mononuclear cells (PBMCs) of CLL patients often contain high levels of CLL cells that can interfere with CAR T cell production, and T cells from CLL patients are prone to exhaustion and other functional defects. We previously developed an anti-CD19 CAR designated Hu19-CD828Z.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a challenging cancer of plasma cells, and researchers developed a new treatment using a human anti-BCMA CAR called FHVH33-CD8BBZ to target it.
  • In a clinical trial involving 25 patients with relapsed MM, the treatment resulted in a 52% stringent complete response rate and a median progression-free survival of 78 weeks.
  • While some patients experienced cytokine-release syndrome, it was manageable and most anti-MM effects were observed within 2-4 weeks post-infusion, indicating the treatment's rapid and effective action against the disease.
View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.

View Article and Find Full Text PDF

Background Aims: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products.

Methods: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated.

View Article and Find Full Text PDF

New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial.

View Article and Find Full Text PDF

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS.

View Article and Find Full Text PDF

Background Aims: Reference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people.

View Article and Find Full Text PDF

Background Aims: Hematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today.

View Article and Find Full Text PDF

Cryopreservation of chimeric antigen receptor (CAR) T cells facilitates shipment, timing of infusions, and storage of subsequent doses. However, reports on the impact of cryopreservation on CAR T cell efficacy have been mixed. We retrospectively compared clinical outcomes between patients who received cryopreserved versus fresh CAR T cells for treatment of B cell leukemia across two cohorts of pediatric and young adult patients: those who received anti-CD22 CAR T cells and those who received bispecific anti-CD19/22 CAR T cells.

View Article and Find Full Text PDF

Background: Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.

View Article and Find Full Text PDF

Purpose: Ovarian cancer is the most lethal gynecologic cancer and intrinsically resistant to checkpoint immunotherapies. We sought to augment innate immunity, building on previous work with IFNs and monocytes.

Patients And Methods: Preclinical experiments were designed to define the mechanisms of cancer cell death mediated by the combination of IFNs α and γ with monocytes.

View Article and Find Full Text PDF

gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the β2 integrin common chain, CD18. CD34 HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene.

View Article and Find Full Text PDF

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cells (CART) are active in relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL), but relapse remains a substantial challenge. Reinfusion with the same CART product (CART2) in patients with suboptimal response or antigen positive relapse following first infusion (CART1) represents a potential treatment strategy, though early experiences suggest limited efficacy of CART2 with CD19 targeting. We report on our experience with CART2 across a host of novel CAR T-cell trials.

View Article and Find Full Text PDF

Engineered T cell therapies such as CAR-T cells and TCR-T cells have generated impressive patient responses in previously incurable diseases. In the past few years there have been a number of technical innovations that enable robust clinical manufacturing in functionally closed and often automated systems. Here we describe the latest technology used to manufacture CAR- and TCR-engineered T cells in the clinic, including cell purification, transduction/transfection, expansion and harvest.

View Article and Find Full Text PDF

The use of cellular therapies to treat cancer, inherited immune deficiencies, hemoglobinopathies and viral infections is growing rapidly. The increased interest in cellular therapies has led to the development of reagents and closed-system automated instruments for the production of these therapies. For cellular therapy clinical trials involving multiple sites some people are advocating a decentralized model of manufacturing where patients are treated with cells produced using automated instruments at each participating center using a single, centrally held Investigational New Drug Application (IND).

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) or T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for the treatment of hematologic malignancies and solid tumors. Multiparametric flow cytometry-based assays play a critical role in monitoring cellular manufacturing steps. Since manufacturing CAR/TCR T-cell products must be in compliance with current good manufacturing practices (cGMP), a standard or quality control for flow cytometry assays should be used to ensure the accuracy of flow cytometry results, but none is currently commercially available.

View Article and Find Full Text PDF