Publications by authors named "Steven Head"

Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal.

View Article and Find Full Text PDF

Objectives: CHRFAM7A is a uniquely human fusion gene that functions as a dominant negative regulator of alpha 7 acetylcholine nicotinic receptor (α7nAChR) in vitro. This study determined the impact of CHRFAM7A on α7nAChR agonist responses, osteoarthritis (OA) severity and pain behaviours and investigated mechanisms.

Methods: Transgenic CHRFAM7A (TgCHRFAM7A) mice were used to determine the impact of CHRFAM7A on knee OA histology, pain severity in OA and other pain models, response to nAchR agonist and IL-1β.

View Article and Find Full Text PDF

Objectives: Single-cell level analysis of articular cartilage and meniscus tissues from human healthy and osteoarthritis (OA) knees.

Methods: Single-cell RNA sequencing (scRNA-seq) analyses were performed on articular cartilage and meniscus tissues from healthy (n=6, n=7) and OA (n=6, n=6) knees. Expression of genes of interest was validated using immunohistochemistry and RNA-seq and function was analysed by gene overexpression and depletion.

View Article and Find Full Text PDF

Understanding antibody specificity and defining response profiles to antigens continue to be essential to both vaccine research and therapeutic antibody development. Peptide scanning assays enable mapping of continuous epitopes in order to delineate antibody-antigen interactions beyond traditional immunoassay formats. We have developed a relatively low-cost method to generate peptide microarray slides for antibody binding studies that allow for interrogation of up to 1536 overlapping peptides derived from the target antigens on a single microslide.

View Article and Find Full Text PDF

Prefrontal circuits are thought to underlie aberrant emotion contributing to relapse in abstinence; however, the discrete cell-types and mechanisms remain largely unknown. Corticotropin-releasing factor and its cognate type-1 receptor, a prominent brain stress system, is implicated in anxiety and alcohol use disorder (AUD). Here, we tested the hypothesis that medial prefrontal cortex CRF1-expressing (mPFC) neurons comprise a distinct population that exhibits neuroadaptations following withdrawal from chronic ethanol underlying AUD-related behavior.

View Article and Find Full Text PDF

Objectives: Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis.

Methods: Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq).

View Article and Find Full Text PDF

Background: Tumor heterogeneity may lead to false negative test results for tissue biopsy-based companion diagnostic tests. Real-time polymerase chain reaction (PCR) and digital PCR assays are used to detect rare alleles in cell-free circulating DNA for liquid biopsies; however, those tests lack strong sensitivity at low allele frequencies. We show here a novel real-time digital PCR instrument that utilizes cycle-based amplification curves to further improve the sensitivity and quantification accuracy of digital PCR.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC.

View Article and Find Full Text PDF

Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches.

View Article and Find Full Text PDF

A real-time dPCR system was developed to improve the sensitivity, specificity and quantification accuracy of end point dPCR. We compared three technologies - real-time qPCR, end point dPCR and real-time dPCR - in the context of SARS-CoV-2. Some improvement in limit of detection was obtained with end point dPCR compared with real-time qPCR, and the limit of detection was further improved with the newly developed real-time dPCR technology through removal of false-positive signals.

View Article and Find Full Text PDF

The human microbiome encompasses a variety of microorganisms that change dynamically and are in close contact with the body. The microbiome influences health and homeostasis, as well as the immune system, and any significant change in this equilibrium (dysbiosis) triggers both acute and chronic health conditions. Microbiome research has surged, in part, due to advanced sequencing technologies enabling rapid, accurate, and cost-effective identification of the microbiome.

View Article and Find Full Text PDF

is an important pathogen responsible for nosocomial and community-acquired infections in humans, and methicillin-resistant (MRSA) infections have continued to increase despite widespread preventative measures. can colonize the female vaginal tract, and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection.

View Article and Find Full Text PDF

Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments.

View Article and Find Full Text PDF

Background: Viruses play an important role in ecosystems, including the built environment (BE). While numerous studies have characterized bacterial and fungal microbiomes in the BE, few have focused on the viral microbiome (virome). Longitudinal microbiome studies provide insight into the stability and dynamics of microbial communities; however, few such studies exist for the microbiome of the BE, and most have focused on bacteria.

View Article and Find Full Text PDF

Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes.

View Article and Find Full Text PDF

Background: The Jurkat cell line has an extensive history as a model of T cell signaling. But at the turn of the 21st century, some expression irregularities were observed, raising doubts about how closely the cell line paralleled normal human T cells. While numerous expression deficiencies have been described in Jurkat, genetic explanations have only been provided for a handful of defects.

View Article and Find Full Text PDF

Many methods exist for examining CpG DNA methylation. However, many of these are qualitative, laborious to apply to a large number of genes simultaneously, or are not easy to target to specific regions of interest. Microdroplet PCR-based bisulfite sequencing allows for quantitative single base resolution analysis of investigator selected regions of interest.

View Article and Find Full Text PDF

In this chapter, we describe a method for making Illumina-compatible sequencing libraries from RNA. This protocol can be used for standard RNAseq analysis for detecting differentially expressed genes. In addition, this protocol is ideally suited for adapting to RIPseq, 5'-RACE, RNA structural probing, nascent RNA sequencing, and other protocols where polymerase termination sites need to be profiled.

View Article and Find Full Text PDF

Li-Fraumeni syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is passed from parent to child. Tumor protein p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Paradoxically, some mutant TP53 carriers remain unaffected, while their children develop cancer within the first few years of life.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) modulate the expression of many target genes, but it's unclear how these small changes result in specific functions.
  • An analysis of B cells from mutant mice showed that only a small fraction of target genes are suppressed by certain miRNA levels, indicating differential sensitivity among them.
  • The study reveals that miRNAs like miR-17~92 primarily regulate gene expression through translational repression, with the 5'UTR being crucial for how sensitive genes are to miRNA effects.
View Article and Find Full Text PDF

Background: CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008-2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS).

View Article and Find Full Text PDF

Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair.

View Article and Find Full Text PDF
Article Synopsis
  • Posttranslational modifications (PTMs) like ubiquitin, SUMO, and phosphorylation are key for regulating proteins in cells, aiding in growth and responses to stressors like genotoxins.
  • SUMO-targeted ubiquitin ligases (STUbLs) assist in managing these PTMs by tagging proteins with poly-SUMO chains for degradation or processing, indicating a critical role in DNA damage response.
  • Recent findings show that the phosphatase PP2A-Pab1B55 influences the SUMO pathway, suggesting its role in stabilizing or enhancing PTM processes, which could have implications for therapeutic strategies targeting these pathways.
View Article and Find Full Text PDF