Publications by authors named "Steven H L Verhelst"

Rhomboid proteases play a variety of physiological roles, but rhomboid protease inhibitors have been mostly developed for the model rhomboid GlpG. In this work, we screened different electrophilic scaffolds against the human mitochondrial rhomboid PARL and found 4-oxo-β-lactams as submicromolar inhibitors. Multifaceted computations suggest explanations for the activity at the molecular scale and provide models of covalently bound complexes.

View Article and Find Full Text PDF

Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases.

View Article and Find Full Text PDF

Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases.

View Article and Find Full Text PDF

Proteases are involved in many essential biological processes. Dysregulation of their activity underlies a wide variety of human diseases. Photopharmacology, as applied on various classes of proteins, has the potential to assist protease research by enabling spatiotemporal control of protease activity.

View Article and Find Full Text PDF

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine.

View Article and Find Full Text PDF

Intracellular Ca signals play a vital role in a broad range of cell biological and physiological processes in all eukaryotic cell types. Dysregulation of Ca signaling has been implicated in numerous human diseases. Over the past four decades, the understanding of how cells use Ca as a messenger has flourished, largely because of the development of reporters that enable visualization of Ca signals in different cellular compartments, and tools that can modulate cellular Ca signaling.

View Article and Find Full Text PDF

Intramembrane serine proteases (rhomboid proteases) are involved in a variety of biological processes and are implicated in several diseases. Here, we report 4-oxo-β-lactams as a novel scaffold for inhibition of rhomboids. We show that they covalently react with the active site and that the covalent bond is sufficiently stable for detection of the covalent rhomboid-lactam complex.

View Article and Find Full Text PDF

The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases.

View Article and Find Full Text PDF

Activity-based probes (ABPs) are covalent chemical tools that are widely used to target proteases in chemical biology. Here, we report a series of novel ABPs for the serine protease furin with phosphonate and phosphinate esters as reactive electrophiles. We show that these probes covalently label furin and have nanomolar potencies, because of proposed interactions with the different recognition pockets around the active site of furin.

View Article and Find Full Text PDF

Photoaffinity labeling followed by tandem mass spectrometry is an often used strategy to identify protein targets of small-molecule drugs or drug candidates, which, under ideal conditions, enables the identification of the actual drug binding site. In the case of bioactive peptides, however, identifying the distinct binding site is hampered because of complex fragmentation patterns during tandem mass spectrometry. We here report the development and use of small cleavable photoaffinity reagents that allow functionalization of bioactive peptides for light-induced covalent binding to their protein targets.

View Article and Find Full Text PDF

Sulfur(VI)-fluoride exchange (SuFEx) chemistry, an all-encompassing term for substitution events that replace fluoride at an electrophilic sulfur(VI), enables the rapid and flexible assembly of linkages around a S core. Although a myriad of nucleophiles and applications works very well with the SuFEx concept, the electrophile design has remained largely SO -based. Here, we introduce S≡N-based fluorosulfur(VI) reagents to the realm of SuFEx chemistry.

View Article and Find Full Text PDF

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood.

View Article and Find Full Text PDF

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group.

View Article and Find Full Text PDF

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2.

View Article and Find Full Text PDF

The COVID-19 pandemic has revealed the vulnerability of the modern, global society. With expected waves of future infections by SARS-CoV-2, treatment options for infected individuals will be crucial in order to decrease mortality and hospitalizations. The SARS-CoV-2 main protease is a validated drug target, for which the first inhibitor has been approved for use in patients.

View Article and Find Full Text PDF

TRPM3 is an ion channel that is highly expressed in nociceptive neurons and plays a key role in pain perception. In the presence of the endogenous TRPM3 ligand, pregnenolone sulfate (PS), the antifungal compound clotrimazole (Clt) augments Ca signaling and opens a non-canonical pore, permeable to Na, which aggravates TRPM3-induced pain. To date, little is known about structural features that govern the Clt modulatory effect of TRPM3.

View Article and Find Full Text PDF

The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia.

View Article and Find Full Text PDF

Acyl protein thioesterases hydrolyze fatty acid thioesters on cysteine residues of proteins. The two protein depalmitoylases APT1 and APT2 have a very high degree of similarity and show substantial overlap in substrate utility. Potent, selective, and cell-permeable activity-based probes are needed to study the role of these enzymes.

View Article and Find Full Text PDF

Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the generation of trifluoromethanesulfonyl fluoride (CFSOF) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions.

View Article and Find Full Text PDF

Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for serine proteases, specifically neutrophil serine proteases.

View Article and Find Full Text PDF

Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments.

View Article and Find Full Text PDF

Membrane proteins are key in a large number of physiological and pathological processes. Their study often involves a prior detergent solubilization step, which strips away the membrane and can jeopardize membrane protein integrity. A recent alternative to detergents encompasses maleic acid based copolymers (xMAs), which disrupt the lipid bilayer and form lipid protein nanodiscs (xMALPs) soluble in aqueous buffer.

View Article and Find Full Text PDF