Ubiquitin C-terminal hydrolase L1 (UCHL1) is a neuronal protein important in maintaining axonal integrity and motor function and may be important in the pathogenesis of many neurological disorders. UCHL1 may ameliorate acute injury and improve recovery after cerebral ischemia. In the current study, the hypothesis that UCHL1's hydrolase activity underlies its effect in maintaining axonal integrity and function is tested after ischemic injury.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration.
View Article and Find Full Text PDFAgeing Res Rev
April 2023
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery.
View Article and Find Full Text PDFUbiquitin carboxy terminal hydrolase L1 (UCHL1) is a protein highly expressed in neurons that may play important roles in the ubiquitin proteasome pathway (UPP) in neurons, axonal integrity, and motor function after traumatic brain injury (TBI). Binding of reactive lipid species to cysteine 152 of UCHL1 results in unfolding, aggregation, and inactivation of the enzyme. To test the role of this mechanism in TBI, mice bearing a cysteine to alanine mutation at site 152 (C152A mice) that renders UCHL1 resistant to inactivation by reactive lipids were subjected to the controlled cortical impact model (CCI) of TBI and compared to wild type (WT) controls.
View Article and Find Full Text PDFUbiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury.
View Article and Find Full Text PDFOur previous study indicated that nicotinamide phosphoribosyltransferase (NAMPT) is released from cells and might be an important extracellular neuroprotective factor in brain ischemia. Here, we tested whether NAMPT protects against ischemic brain injury when administered directly into the intracerebroventricular (ICV) compartment of the cranium. Recombinant NAMPT protein (2 μg) was delivered ICV in mice subjected to 45-min middle cerebral artery occlusion (MCAO), and the effects on infarct volume, sensorimotor function, microglia/macrophage polarization, neutrophil infiltration, and BBB integrity were analyzed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a unique brain-specific deubiquitinating enzyme. Mutations in and aberrant function of UCHL1 have been linked to many neurological disorders. UCHL1 activity protects neurons from hypoxic injury, and binding of stroke-induced reactive lipid species to the cysteine 152 (C152) of UCHL1 unfolds the protein and disrupts its function.
View Article and Find Full Text PDFNew neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a risk factor for development of chronic neurodegenerative disorders later in life. This review summarizes the current knowledge and concepts regarding the connection between long-term consequences of TBI and aging-associated neurodegenerative disorders including Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and Parkinsonism, with implications for novel therapy targets. Several aggregation-prone proteins such as the amyloid-beta (Aβ) peptides, tau proteins, and α-synuclein protein are involved in secondary pathogenic cascades initiated by a TBI and are also major building blocks of the hallmark pathological lesions in chronic human neurodegenerative diseases with dementia.
View Article and Find Full Text PDFMany mechanisms or pathways are involved in secondary post-traumatic brain injury, such as the ubiquitin-proteasome pathway (UPP), axonal degeneration and neuronal cell apoptosis. UCH-L1 is a protein that is expressed in high levels in neurons and may have important roles in the UPP, autophagy and axonal integrity. The current study aims to evaluate the role of UCH-L1 in post-traumatic brain injury (TBI) and its potential therapeutic effects.
View Article and Find Full Text PDFThe ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases.
View Article and Find Full Text PDFRosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1-5 d, 14-20 d post injury, respectively).
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2) is an important contributor to ischemic brain injury. Identification of the downstream mediators of COX-2 toxicity may allow the development of targeted therapies. Of particular interest is the cyclopentenone family of prostaglandin metabolites.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
July 2015
Ischemic stroke is caused when blood flow to the brain is hampered, leading to instant deficiency of nutrients and oxygen required for normal brain functioning. Reperfusion can alleviate damage from stroke if performed immediately after the onset of ischemia however the efficacy of reperfusion is tempered by secondary injury mechanisms. This multifarious sequence of events leads to the commencement of deleterious cycles of inflammation, oxidant stress and apoptosis that finally culminate in delayed death of neuronal cells even when the brain is effectively reperfused.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2014
The metabolites of arachidonic acid (AA) produced from the cyclooxygenase (COX) pathway, collectively termed as prostanoids, and from the CYP 450 pathway, eicosanoids, have been implicated in various neuro-degenerative and neuroinflammatory diseases. This study developed a quantitative UPLC-MS/MS method to simultaneously measure 11 prostanoids including prostaglandins and cyclopentenone metabolites in the rat brain cortical tissue. Linear calibration curves ranging from 0.
View Article and Find Full Text PDFSoluble epoxide hydrolase (sEH) diminishes vasodilatory and neuroprotective effects of epoxyeicosatrienoic acids by hydrolyzing them to inactive dihydroxy metabolites. The primary goals of this study were to investigate the effects of acute sEH inhibition by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) on infarct volume, functional outcome, and changes in cerebral blood flow (CBF) in a rat model of ischemic stroke. Focal cerebral ischemia was induced in rats for 90 min followed by reperfusion.
View Article and Find Full Text PDFProstaglandin D2 (PGD2) is the most abundant prostaglandin in brain but its effect on neuronal cell death is complex and not completely understood. PGD2 may modulate neuronal cell death via activation of DP receptors or its metabolism to the cyclopentenone prostaglandins (CyPGs) PGJ2, Δ(12)-PGJ2 and 15-deoxy-Δ(12,14)-PGJ2, inducing cell death independently of prostaglandin receptors. This study aims to elucidate the effect of PGD2 on neuronal cell death and its underlying mechanisms.
View Article and Find Full Text PDFBackground: Cyclopentenone prostaglandins have been identified as potential neurotoxic agents in the setting of hypoxia-ischemia. Cyclooxygenase-2 (COX-2), the upstream enzyme responsible for prostaglandin production is upregulated following hypoxic-ischemic brain injury. However, the temporal production and concentration of cyclopentenone prostaglandins has not been described following global brain ischemia.
View Article and Find Full Text PDFThe cyclopentenone prostaglandin (CyPG) J₂ series, including prostaglandin J₂ (PGJ₂), Δ¹²-PGJ₂, and 15-deoxy-∆¹²,¹⁴-prostaglandin J₂ (15d-PGJ₂), are active metabolites of PGD₂, exerting multiple effects on neuronal function. However, the physiologic relevance of these effects remains uncertain as brain concentrations of CyPGs have not been precisely determined. In this study, we found that free PGD₂ and the J₂ series CyPGs (PGJ₂, Δ¹²-PGJ₂, and 15d-PGJ₂) were increased in post-ischemic rat brain as detected by UPLC-MS/MS with 15d-PGJ₂ being the most abundant CyPG.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) proteins may be useful biomarkers of neuronal death and ultimate prognosis after hypoxic-ischemic brain injury. Cytochrome c has been identified in the CSF of children following traumatic brain injury. Cytochrome c is required for cellular respiration but it is also a central component of the intrinsic pathway of apoptosis.
View Article and Find Full Text PDFHeat shock protein 27 (HSP27) (or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by posttranslational modification, with differential cellular effects based on phosphorylation at specific serine residues.
View Article and Find Full Text PDFReperfusion of ischemic brain can reduce injury and improve outcome, but secondary injury due to inflammatory mechanisms limits the efficacy and time window of such treatments for stroke. This review summarizes the cellular and molecular basis of inflammation in ischemic injury as well as possible therapeutic strategies.
View Article and Find Full Text PDFCyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ(2)] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ(2) induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons.
View Article and Find Full Text PDF