Publications by authors named "Steven G Ralph"

Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests.

View Article and Find Full Text PDF

Background: In conifers, terpene synthases (TPSs) of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress.

Results: The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs) and full-length cDNAs in several spruce (Picea) species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes.

View Article and Find Full Text PDF

• Poplar has been established as a model tree system for genomic research of the response to biotic stresses. This study describes a series of induced transcriptome changes and the associated physiological characterization of local and systemic responses in hybrid poplar (Populus trichocarpa × deltoides) after simulated herbivory. • Responses were measured in local source (LSo), systemic source (SSo), and systemic sink (SSi) leaves following application of forest tent caterpillar (Malacosoma disstria) oral secretions to mechanically wounded leaves.

View Article and Find Full Text PDF

Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation-tagged Populus tremula × Populus alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar.

View Article and Find Full Text PDF

The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps.

View Article and Find Full Text PDF

*Kunitz protease inhibitors (KPIs) feature prominently in poplar defense responses against insects. The increasing availability of genomics resources enabled a comprehensive analysis of the poplar (p)KPI family. *Using genome analysis, expressed sequence tag (EST) mining and full-length (FL)cDNA cloning we established an inventory and phylogeny of pKPIs.

View Article and Find Full Text PDF

Long-lived conifer trees depend on both constitutive and induced defenses for resistance against a myriad of potential pathogens and herbivores. In species of spruce (Picea spp.), several of the late events of pathogen-, insect-, or elicitor-induced defense responses have previously been characterized at the anatomical, biochemical, transcriptome, and proteome levels in stems and needles.

View Article and Find Full Text PDF

Background: Members of the pine family (Pinaceae), especially species of spruce (Picea spp.) and pine (Pinus spp.), dominate many of the world's temperate and boreal forests.

View Article and Find Full Text PDF

The plant enzyme 4-coumarate:coenzyme A ligase (4CL) is part of a family of adenylate-forming enzymes present in all organisms. Analysis of genome sequences shows the presence of '4CL-like' enzymes in plants and other organisms, but their evolutionary relationships and functions remain largely unknown. 4CL and 4CL-like genes were identified by BLAST searches in Arabidopsis, Populus, rice, Physcomitrella, Chlamydomonas and microbial genomes.

View Article and Find Full Text PDF

Background: The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions.

View Article and Find Full Text PDF

Cold acclimation in conifers is a complex process, the timing and extent of which reflects local adaptation and varies widely along latitudinal gradients for many temperate and boreal tree species. Despite their ecological and economic importance, little is known about the global changes in gene expression that accompany autumn cold acclimation in conifers. Using three populations of Sitka spruce (Picea sitchensis) spanning the species range, and a Picea cDNA microarray with 21,840 unique elements, within- and among-population gene expression was monitored during the autumn.

View Article and Find Full Text PDF

Conifers produce terpenoid-based oleoresins as constitutive and inducible defenses against herbivores and pathogens. Much information is available about the genes and enzymes of the late steps of oleoresin terpenoid biosynthesis in conifers, but almost nothing is known about the early steps which proceed via the methylerythritol phosphate (MEP) pathway. Here we report the cDNA cloning and functional identification of three Norway spruce (Picea abies) genes encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, and their differential expression in the stems of young saplings.

View Article and Find Full Text PDF

The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to poplar leaf rust (Melampsora medusae) infection was studied using the Populus 15.5K cDNA microarray.

View Article and Find Full Text PDF

Analysis of expressed sequence tags (ESTs) and full-length (FL)cDNAs from species of spruce (Picea spp.) revealed a family of 35 unique dirigent proteins (DIR) and DIR-like proteins. Phylogenetic analysis indicates the spruce DIR and DIR-like genes cluster into three distinct subfamilies, DIR-a, DIR-b/d, and DIR-f, of a larger plant DIR and DIR-like gene family.

View Article and Find Full Text PDF

Ophiostoma clavigerum is a destructive pathogen of lodgepole pine (Pinus contorta) forests in western North America. It is therefore a relevant system for a genomics analysis of fungi vectored by bark beetles. To begin characterizing molecular interactions between the pathogen and its conifer host, we created an expressed sequence tag (EST) collection for O.

View Article and Find Full Text PDF

The apical shoot drives the yearly new stem growth of conifer trees, is the primary site for the establishment of chemical and physical defences, and is important in establishing subsequent perennial growth. This organ presents an interesting developmental system, with growth and development progressing from a meristematic tip through development of a primary vascular system, to a base with fully differentiated and lignified secondary xylem on the inside and bark tissue with constitutive defence structures such as resin, polyphenolic phloem parenchyma cells, and sclereids on the outside. A spruce (Picea spp.

View Article and Find Full Text PDF

Feeding insects can have major ecological and economic impacts on both natural and planted forests. Understanding the molecular and biochemical mechanisms by which conifers defend themselves from insect pests is a major goal of ongoing research in forest health genomics. In previous work, we demonstrated a complex system of anatomical, chemical, and transcriptome responses in Sitka spruce (Picea sitchensis) upon feeding by the economically significant insect pest, the white pine weevil (Pissodes strobi).

View Article and Find Full Text PDF

In conifer stems, formation of chemical defenses against insects or pathogens involves specialized anatomical structures of the phloem and xylem. Oleoresin terpenoids are formed in resin duct epithelial cells and phenolics accumulate in polyphenolic parenchyma cells. Ethylene signaling has been implicated in the induction of these chemical defenses.

View Article and Find Full Text PDF

Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown.

View Article and Find Full Text PDF

Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization.

View Article and Find Full Text PDF