Publications by authors named "Steven G Kultgen"

Since the SARS-CoV-2 outbreak, there have been ongoing efforts to identify antiviral molecules with broad coronavirus activity to combat COVID-19. SARS-CoV-2's main protease (M) is responsible for processing the viral polypeptide into non-structural proteins essential for replication. Here, we present the biological characterization of AB-343, a covalent small-molecule inhibitor of SARS-CoV-2 M with potent activity in both cell-based (EC = 0.

View Article and Find Full Text PDF

HBV capsid assembly modulators (CAMs) target the core protein and inhibit pregenomic RNA encapsidation and viral replication. HBV CAMs also interfere with cccDNA formation during de novo infection, which in turn suppresses transcription and production of HBV antigens. In this report, we describe the antiviral activities of AB-836, a potent and highly selective HBV CAM.

View Article and Find Full Text PDF

Isoquinolinone-based HBV capsid assembly modulators that bind at the dimer:dimer interface of HBV core protein have been shown to suppress viral replication in chronic hepatitis B patients. Analysis of their binding mode by protein X-ray crystallography has identified a region of the small molecule where the application of a constraint can lock the preferred binding conformation and has allowed for further optimization of this class of compounds. Key analogues demonstrated single digit nM EC values in reducing HBV DNA in a HepDE19 cellular assay in addition to favorable ADME and pharmacokinetic properties, leading to a high degree of oral efficacy in a relevant hydrodynamic injection mouse model of HBV infection, with effecting a 3 log decline in serum HBV DNA levels at a once daily dose of 1 mg/kg.

View Article and Find Full Text PDF

Inhibition of Hepatitis B Virus (HBV) replication by small molecules that modulate capsid assembly and the encapsidation of pgRNA and viral polymerase by HBV core protein is a clinically validated approach toward the development of new antivirals. Through definition of a minimal pharmacophore, a series of isoquinolinone-based capsid assembly modulators (CAMs) was identified. Structural biology analysis revealed that lead molecules possess a unique binding mode, exploiting electrostatic interactions with accessible phenylalanine and tyrosine residues.

View Article and Find Full Text PDF

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues and , which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.

View Article and Find Full Text PDF

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes.

View Article and Find Full Text PDF

Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.

View Article and Find Full Text PDF

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC of 0.077 μM, CC > 25 μM) and in vivo (HBV mouse model: ∼3.0 log reductions in serum HBV DNA compared to the vehicle control).

View Article and Find Full Text PDF

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability.

View Article and Find Full Text PDF

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC] = 0.08 to 0.

View Article and Find Full Text PDF

Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases.

View Article and Find Full Text PDF

A series of compounds based on a 4-phenyl-2-phenylaminopyridine scaffold that are potent and selective inhibitors of Traf2- and Nck-interacting kinase (TNIK) activity are described. These compounds were used as tools to test the importance of TNIK kinase activity in signaling and proliferation in Wnt-activated colorectal cancer cells. The results indicate that pharmacological inhibition of TNIK kinase activity has minimal effects on either Wnt/TCF4/β-catenin-driven transcription or viability.

View Article and Find Full Text PDF

High-throughput screening of 3.87 million compounds delivered a novel series of non-steroidal GR antagonists. Subsequent rounds of optimisation allowed progression from a non-selective ligand with a poor ADMET profile to an orally bioavailable, selective, stable, glucocorticoid receptor antagonist.

View Article and Find Full Text PDF

A novel series of quinolinone-based adenosine A(2B) receptor antagonists was identified via high throughput screening of an encoded combinatorial compound collection. Synthesis and assay of a series of analogs highlighted essential structural features of the initial hit. Optimization resulted in an A(2B) antagonist (2i) which exhibited potent activity in a cAMP accumulation assay (5.

View Article and Find Full Text PDF

The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity.

View Article and Find Full Text PDF

An imidazolylpyrimidine was identified in a CXCR2 chemokine receptor antagonist screen and was optimized for potency, in vitro metabolic stability, and oral bioavailability. It was found that subtle structural modification within the series affected the oral bioavailability. Potent and orally available CXCR2 antagonists are herein reported.

View Article and Find Full Text PDF

Potent small molecule biaryl diketopiperazine FSH receptor agonists such as 10c (EC(50)=13 nM) and 11f (EC(50)=1.2 nM) were discovered through the design, synthesis and evaluation of three biaryl diketopiperazine optimization libraries with over 300 compounds. These libraries were prepared via solid-phase parallel synthesis using a cyclization-release method.

View Article and Find Full Text PDF

High-throughput screening of two million compounds in 37 distinct encoded combinatorial libraries using FSH receptor transfected cells provided small molecule agonists such as 1 (EC(50)=3 microM) and 2 (EC(50)=3.9 microM), based on which a focused combinatorial library with a total of 31372 compounds was designed, synthesized, and screened to reveal 72 novel biaryl FSH receptor agonists such as 8a-c as well as a unique combinatorial SAR.

View Article and Find Full Text PDF

Structure-activity studies on benzamide 1 obtained from library screening led to the discovery of a novel series of potent and selective glycine transporter type-2 inhibitors.

View Article and Find Full Text PDF