Background: Neuroinflammation is ubiquitous in acute stroke and worsens outcome. However, the precise timing of the inflammatory response is unknown, hindering the design of acute anti-inflammatory therapeutic interventions. We sought to identify the onset of the neuroinflammatory cascade using a mobile stroke unit.
View Article and Find Full Text PDFAs an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them.
View Article and Find Full Text PDFThe complexity of human tissue fluid precludes timely identification of cancer biomarkers by immunoassay or mass spectrometry. An increasingly attractive strategy is to primarily enrich extracellular vesicles (EVs) released from cancer cells in an accelerated manner compared to normal cells. The Vn96 peptide was herein employed to recover a subset of EVs released into the media from cellular models of breast cancer.
View Article and Find Full Text PDFRecent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins.
View Article and Find Full Text PDF