Publications by authors named "Steven G Chopski"

Article Synopsis
  • The study developed a multi-physics modeling framework using Computational Fluid Dynamics (CFD) to simulate the transport of nasal corticosteroid sprays.
  • The CFD predictions for peak plasma concentration and area under the curve closely matched existing in vivo pharmacokinetic data, showing the models' effectiveness in estimating drug delivery.
  • The framework aims to streamline the development of nasal spray products by predicting how variations in spray techniques and patient usage affect drug absorption and distribution in the body.
View Article and Find Full Text PDF

There continues to be an unmet therapeutic need for an alternative treatment strategy for respiratory distress and lung disease. We are developing a portable cardiopulmonary support system that integrates an implantable oxygenator with a hybrid, dual-support, continuous-flow total artificial heart (TAH). The TAH has a centrifugal flow pump that is rotating about an axial flow pump.

View Article and Find Full Text PDF

Little data are available on the accuracy of phase-contrast magnetic resonance imaging (PC-MRI) velocity mapping in the vicinity of intravascular metal stents other than nitinol stents. Therefore, we sought to determine this accuracy using in vitro experiments. An in vitro flow phantom was used with 3 stent types: (1) 316L stainless steel, (2) nitinol self-expanding, and (3) platinum-iridium.

View Article and Find Full Text PDF

The clinical implementation of mechanical circulatory assistance for a significantly dysfunctional or failing left ventricle as a bridge-to-transplant or bridge-to-recovery is on the rise. Thousands of patients with left-sided heart failure are readily benefitting from these life-saving technologies, and left ventricular failure often leads to severe right ventricular dysfunction or failure. Right ventricular failure (RVF) has a high rate of mortality caused by the risk of multisystem organ failure and prolonged hospitalization for patients after treatment.

View Article and Find Full Text PDF

Background: Limited therapeutic options are available for Fontan patients with dysfunctional or failing single ventricle physiology. This study describes the evaluation of an alternative, non-invasive, at-home therapeutic compression treatment for Fontan patients. Our hypothesis is that routinely administered, externally applied compression treatments to the lower extremities will augment systemic venous return, improve ventricular preload, and thus enhance cardiac output in Fontan patients.

View Article and Find Full Text PDF

The use of mechanical circulatory support (MCS) devices is a viable therapeutic treatment option for patients with congestive heart failure. Ventricular assist devices, cavopulmonary assist devices, and total artificial heart pumps continue to gain acceptance as viable treatment strategies for both adults and pediatric patients as bridge-to-transplant, bridge-to-recovery, and longer-term circulatory support alternatives. We present a review of the current and future MCS devices for patients having congenital heart disease (CHD) with biventricular or univentricular circulations.

View Article and Find Full Text PDF

Mechanical circulatory support offers an alternative therapeutic treatment for patients with dysfunctional single ventricle physiology. An intravascular axial flow pump is being developed as a cavopulmonary assist device for these patients. This study details the development of a new rotating impeller geometry.

View Article and Find Full Text PDF

Surgical optimization of the cavopulmonary connection and pharmacological therapy for dysfunctional Fontan physiology continue to advance, but these treatment approaches only slow the progression of decline to end-stage heart failure. The development of a mechanical cavopulmonary assist device will provide a viable therapeutic option in the bridging of patients to transplant or to stabilization. We hypothesize that rotational blood flow, delivered by an implantable axial flow blood pump, could effectively assist the venous circulation in Fontan patients by mimicking vortical blood flow patterns in the cardiovascular system.

View Article and Find Full Text PDF

An intravascular axial flow pump is being developed as a mechanical cavopulmonary assist device for adolescent and adult patients with dysfunctional Fontan physiology. Coupling computational modeling with experimental evaluation of prototypic designs, this study examined the hydraulic performance of 11 impeller prototypes with blade stagger or twist angles varying from 100 to 600 degrees. A refined range of twisted blade angles between 300 and 400 degrees with 20-degree increments was then selected, and four additional geometries were constructed and hydraulically evaluated.

View Article and Find Full Text PDF

Mechanical assistance of the Fontan circulation is hypothesized to enhance ventricular preload and improve cardiac output; however, little is known about the fluid dynamics. This study is the first to investigate the three-dimensional flow conditions of a blood pump in an anatomic Fontan. Laser measurements were conducted having an axial flow impeller in the inferior vena cava.

View Article and Find Full Text PDF
Article Synopsis
  • * Three new pump designs were tested, with the top-performing Rec design showing significant pressure performance and low blood damage indices, making it more effective than the others studied.
  • * Numerical predictions of the pump's performance were mostly accurate in prototype testing, indicating it can support Fontan patients with minimal risk of blood trauma.
View Article and Find Full Text PDF

Single ventricle anomalies are a challenging set of congenital heart defects that require lifelong clinical management due to progressive decline of cardiovascular function. Few therapeutic devices are available for these patients, and conventional blood pumps are not designed for the unique anatomy of the single ventricle physiology. To address this unmet need, we are developing an axial flow blood pump with a protective cage or stent for Fontan patients.

View Article and Find Full Text PDF

A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs.

View Article and Find Full Text PDF

Background: This study investigated the application of circumferentially applied, external pressure to the lower extremities as a preventative measure and long-term clinical treatment strategy for Fontan patients.

Objective: We hypothesized that the application of circumferential pressure to the lower limbs will augment venous return and thus cardiac output.

Methods: Two patients (an extra-cardiac and intra-atrial Fontan) were evaluated.

View Article and Find Full Text PDF

A blood pump specifically designed to augment flow from the great veins through the lungs would ameliorate the poor physiology of the failing univentricular circulation and result in a paradigm shift in the treatment strategy for Fontan patients. This study is the first to examine mechanical cavopulmonary assistance with a blood pump in the inferior vena cava (IVC) and hepatic blood flow. Five numerical models of mechanical cavopulmonary assistance were investigated using a three-dimensional, reconstructed, patient-specific Fontan circulation from magnetic resonance imaging data.

View Article and Find Full Text PDF

Failing single ventricle physiology represents an ongoing challenge in mechanical assist device development, requiring pressure augmentation in the cavopulmonary circuit, reduction of systemic venous pressure, and increased cardiac output to achieve hemodynamic stabilization. To meet these requirements, we are developing a percutaneously-placed, axial flow blood pump to support ailing single ventricle physiology in adolescents and adults. We have modified the outer cage of the device to serve as both a protective and functional design component.

View Article and Find Full Text PDF

This study examined the interactive fluid dynamics between a cavopulmonary assist device and univentricular Fontan circulation. We conducted two-dimensional particle image velocimetry measurements on an idealized total cavopulmonary connection (TCPC) with an axial pump prototype intravascularly inserted into the inferior vena cava (IVC) and then in the IVC and the superior vena cava (SVC) for a dual-pump support case. The glass model of the TCPC consisted of rigid vessels having a diameter of 13.

View Article and Find Full Text PDF

Currently available mechanical circulatory support systems are limited for adolescent and adult patients with a Fontan physiology. To address this growing need, we are developing a collapsible, percutaneously-inserted, axial flow blood pump to support the cavopulmonary circulation in Fontan patients. During the first phase of development, the design and experimental evaluation of an axial flow blood pump was performed.

View Article and Find Full Text PDF

To provide a viable bridge-to-transplant, bridge-to-recovery, or bridge-to-surgical reconstruction for patients with failing Fontan physiology, we are developing a collapsible, percutaneously inserted, magnetically levitated axial flow blood pump to support the cavopulmonary circulation in adolescent and adult patients. This unique blood pump will augment pressure and thus flow in the inferior vena cava through the lungs and ameliorate the poor hemodynamics associated with the univentricular circulation. Computational fluid dynamics analyses were performed to create the design of the impeller, the protective cage of filaments, and the set of diffuser blades for our axial flow blood pump.

View Article and Find Full Text PDF

Mechanical circulatory support is gaining increased recognition as a viable treatment option for pediatric patients who suffer from congenital or acquired heart disease. Historically, the treatment options have been very limited for pediatric patients, but recent technological advances, combined with new research into circulatory support devices, are seeking alternative therapeutics options for infants and children. We present a review of the technological advances of mechanical circulatory support in the pediatric population, including the recent emergence of a new class of circulatory support devices for pediatric patients with single ventricle physiology.

View Article and Find Full Text PDF