Publications by authors named "Steven G Ball"

Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.

View Article and Find Full Text PDF

Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa.

View Article and Find Full Text PDF

Starch synthases (SSs) are responsible for depositing the majority of glucoses in starch. Structural knowledge on these enzymes that is available from the crystal structures of rice granule bound starch synthase (GBSS) and barley SSI provides incomplete information on substrate binding and active site architecture. Here we report the crystal structures of the catalytic domains of SSIV from , of GBSS from the cyanobacterium CLg1 and GBSSI from the glaucophyte , with all three bound to ADP and the inhibitor acarbose.

View Article and Find Full Text PDF
Article Synopsis
  • Blastocystis is a common gut microbe affecting about 1 billion people globally, with unclear links to intestinal disorders due to many individuals being asymptomatic.
  • The genome analysis of Blastocystis subtype 1 (ST1) reveals significant diversity in size and gene content compared to subtypes ST4 and ST7, with ST1 having more protein-coding genes and unique proteins.
  • Additionally, ST1 possesses unique mechanisms and pathways for metabolism and potentially sexual reproduction, highlighting its distinct biology among related eukaryotic microorganisms.
View Article and Find Full Text PDF
Article Synopsis
  • Biotic interactions are essential for understanding the diversity, complexity, and resilience of life in various ecosystems, particularly in the context of algal biology.
  • Advances in omics and cell biology have allowed researchers to study nonmodel organisms, leading to new insights into the evolution of photosynthesis, bacterial-algal interactions, and the health of coral reefs.
  • The future of algal research may include the creation of a comprehensive knowledge base integrating ecosystem-wide data and innovative molecular tools to explore interactions among algae and other organisms.
View Article and Find Full Text PDF

Transcriptomics is shedding new light on the relationship between photosynthetic algae and salamander eggs.

View Article and Find Full Text PDF

Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, sp.

View Article and Find Full Text PDF

The plastid originated 1.5 billion years ago through a primary endosymbiosis involving a heterotrophic eukaryote and an ancient cyanobacterium. Phylogenetic and biochemical evidence suggests that the incipient endosymbiont interacted with an obligate intracellular chlamydial pathogen that housed it in an inclusion.

View Article and Find Full Text PDF

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol.

View Article and Find Full Text PDF

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen.

View Article and Find Full Text PDF

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown.

View Article and Find Full Text PDF

A number of recent papers have brought suggestive evidence for an active role of Chlamydiales in the establishment of the plastid. Chlamydiales define a very ancient group of obligate intracellular bacterial pathogens that multiply in vesicles within eukaryotic phagotrophic host cells such as animals, amoebae or other protists, possibly including the hypothetical phagotroph that internalized the cyanobacterial ancestor of the plastid over a billion years ago. We briefly survey the case for an active role of these ancient pathogens in plastid endosymbiosis.

View Article and Find Full Text PDF

Several cyanobacterial species, including Cyanothece sp. ATCC 51142, remarkably have four isoforms of α-glucan branching enzymes (BEs). Based on their primary structures, they are classified into glycoside hydrolase (GH) family 13 (BE1, BE2 and BE3) or family 57 (GH57 BE).

View Article and Find Full Text PDF

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.

View Article and Find Full Text PDF

The starch debranching enzymes isoamylase 1 and 2 (ISA1 and ISA2) are known to exist in a large complex and are involved in the biosynthesis and crystallization of starch. It is suggested that the function of the complex is to remove misplaced branches of growing amylopectin molecules, which would otherwise prevent the association and crystallization of adjacent linear chains. Here, we investigate the function of ISA1 and ISA2 from starch producing alga Chlamydomonas.

View Article and Find Full Text PDF

Background: Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families.

View Article and Find Full Text PDF
Article Synopsis
  • - Starch forms insoluble, semicrystalline granules, whereas glycogen in the cytosol remains hydrosoluble; the ability to store starch in eukaryotes appears after the evolution of plastids from a glycogen-based metabolism.
  • - A debranching enzyme, derived from chlamydial pathogens, plays a crucial role in starch accumulation by removing undesired branches that could lead to water-soluble forms.
  • - Similar to plants, single-cell cyanobacteria utilize a different bacterial debranching enzyme that has evolved independently but serves the same function, indicating convergent evolution and shared substrate specificity with plant enzymes.
View Article and Find Full Text PDF

The endosymbiont hypothesis proposes that photosynthate from the cyanobiont was exported to the cytosol of the eukaryote host and polymerized from ADP-glucose into glycogen. Chlamydia-like pathogens are the second major source of foreign genes in Archaeplastida, suggesting that these obligate intracellular pathogens had a significant role during the establishment of endosymbiosis, likely through facilitating the metabolic integration between the endosymbiont and the eukaryotic host. In this opinion article, we propose that a hexose phosphate transporter of chlamydial origin was the first transporter responsible for exporting photosynthate out of the cyanobiont.

View Article and Find Full Text PDF

In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of α-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a special test to learn how a tiny green alga called Chlamydomonas reinhardtii moves starch around when it doesn't have nitrogen.
  • They looked at how different factors like lack of nutrients and changes from light to dark affect mutant strains of the alga.
  • About a third of these mutant strains had changes in important genes for breaking down starch, while the rest were missing unknown functions that could help the alga move starch differently.
View Article and Find Full Text PDF
Article Synopsis
  • Red seaweeds like Chondrus crispus (Irish moss) are important for coastal ecosystems and the economy but have been understudied genetically; researchers have sequenced its 105-Mbp genome, identifying 9,606 genes.
  • The genome has a unique structure with densely packed genes but also regions rich in repetitive DNA, and it reveals characteristics typical of compact genomes, including few introns and limited gene families.
  • The study also highlights important metabolic adaptations in marine red algae, including specialized carbohydrate metabolism, and suggests an evolutionary history of gene loss followed by increased genome size due to transposable elements.
View Article and Find Full Text PDF

Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear.

View Article and Find Full Text PDF