Publications by authors named "Steven Freedberg"

Just as intraorganismal selection can produce "selfish" elements that lower individual fitness, selection at the organismal level can favour traits that reduce the fitness of conspecifics and potentially impact population survival. Because dispersal can affect how these traits are distributed within species, it may determine whether their negative consequences are restricted locally or spread throughout the species' range. We present an individual-based simulation model that explores the interaction between dispersal rate and traits that increase individual fecundity at the expense of conspecific fitness.

View Article and Find Full Text PDF

Spatial structure has been shown to favor female-biased sex allocation, but current theory fails to explain male biases seen in many taxa, particularly those with environmental sex determination (ESD). We present a theory and accompanying individual-based simulation model that demonstrates how population structure leads to male-biased population sex ratios under ESD. Our simulations agree with earlier work showing that the high productivity of female-producing habitats creates a net influx of sex-determining alleles into male-producing habitats, causing larger sex ratio biases, and lower productivity in male-producing environments (Harts et al.

View Article and Find Full Text PDF

Maternal sex ratio distorters (MSDs) are selfish elements that enhance their transmission by biasing their host's sex allocation in favor of females. While previous models have predicted that the female-biased populations resulting from sex ratio distortion can benefit from enhanced productivity, these models neglect Fisherian selection for nuclear suppressors, an unrealistic assumption in most systems. We used individual-based computer simulation modeling to explore the intragenomic conflict between sex ratio distorters and their suppressors and explored the impacts of these dynamics on population-level competition between species characterized by MSDs and those lacking them.

View Article and Find Full Text PDF

Despite the presence of reproductive barriers between species, interspecific gene introgression has been documented in a range of natural systems. Comparing patterns of genetic introgression in biparental versus matrilineal markers can potentially reveal sex-specific barriers to interspecific gene flow. Hybridization has been documented in the freshwater turtles Graptemys geographica and G.

View Article and Find Full Text PDF

The developmental environment can have lasting effects on posthatching phenotype in oviparous animals. Innate immune response is one important component of fitness in vertebrates because it provides a generalized defense against infection. In addition, because male vertebrates are at a higher risk of infection than females, males may benefit more from increased innate immunity than females.

View Article and Find Full Text PDF

Oestradiol application during embryonic development reverses the sex of male embryos and results in normal female differentiation in reptiles lacking heteromorphic sex chromosomes, but fails to do so in birds and mammals with heteromorphic sex chromosomes. It is not clear whether the evolution of heteromorphic sex chromosomes in amniotes is accompanied by insensitivity to oestradiol, or if the association between oestradiol insensitivity and heteromorphic sex chromosomes can be attributable to phylogenetic constraints in these taxa. Turtles provide an ideal system to examine the potential relationship between oestradiol insensitivity and sex chromosome heteromorphy, since there are species with heteromorphic sex chromosomes that are closely related to species lacking heteromorphic sex chromosomes.

View Article and Find Full Text PDF

Numerous studies of sea turtle nesting ecology have revealed that females exhibit natal homing, whereby they imprint on the nesting area from which they hatch and subsequently return there to nest as adults. Because freshwater turtles comprise the majority of reptiles known to display environmental sex determination (ESD), the study of natal homing in this group may shed light on recent evolutionary models of sex allocation that are predicated on natal homing in reptiles with ESD. We examined natal homing in Graptemys kohnii, a freshwater turtle with ESD, using mitochondrial sequencing, microsatellite genotyping and mark and recapture of 290 nesting females.

View Article and Find Full Text PDF

The transfer of hormones from a female to her offspring is known to occur in egg laying vertebrates, and the potential for these early, maternally derived hormones to influence sex determination in reptiles with temperature-dependent sex determination is intriguing. In the present study, we examine variation in the concentrations of progesterone, testosterone, and estradiol among three follicle size classes within a female painted turtle (Chrysemys picta) and among females across four periods that span the pre- to post-nesting season. Females were collected, and both follicles and shelled eggs (when present) were harvested for hormone analysis.

View Article and Find Full Text PDF