Publications by authors named "Steven Firestine"

Article Synopsis
  • De novo purine biosynthesis is crucial for producing purine nucleotides necessary for biological functions like nucleic acid replication, involving a key reaction where 5-aminoimidazole ribonucleotide (AIR) is carboxylated to form 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
  • This carboxylation occurs differently across species: humans and higher eukaryotes use AIR carboxylase to directly synthesize CAIR, while bacteria, yeast, fungi, and plants do it in two steps involving N-CAIR synthetase and N-CAIR mutase.
  • Understanding these divergent pathways has implications for developing antimicrobial agents and targeting related enzymes in cancer treatment
View Article and Find Full Text PDF

Although purine biosynthesis is a primary metabolic pathway, there are fundamental differences between how purines are synthesized in microbes versus humans. In humans, the purine intermediate, 4- carboxy-5-aminoimidazole ribonucleotide (CAIR) is directly synthesized from 5-aminoimidazole ribonucleotide (AIR) and carbon dioxide by the enzyme AIR carboxylase. In bacteria, yeast and fungi, CAIR is synthesized from AIR via an intermediate N-carboxyaminoimidazole ribonucleotide (N-CAIR) by the enzyme N-CAIR mutase.

View Article and Find Full Text PDF

Antimicrobial resistance is considered one of the biggest threats to public health worldwide. Methicillin-resistant S. aureus is the causative agent of a number of infections and lung colonization in people suffering from cystic fibrosis.

View Article and Find Full Text PDF

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly.

View Article and Find Full Text PDF

The enzyme N -carboxylaminoinidazole ribonucleotide (N -CAIR) mutase is found in microbial de novo purine biosynthesis but is absent in humans making it an attractive antimicrobial target. N -CAIR mutase catalyzes the synthesis of carboxyaminoimidazole ribonucleotide (CAIR) from N -CAIR which is itself prepared from aminoimidazole ribonucleotide (AIR) by the enzyme N -CAIR synthetase. During our research on identifying inhibitors of N -CAIR mutase, we developed an innovative, fluorescence-based assay to measure the activity of this enzyme.

View Article and Find Full Text PDF

Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI.

View Article and Find Full Text PDF

Rad6B, a principal component of the translesion synthesis pathway, and activator of canonical Wnt signaling, plays an essential role in cutaneous melanoma development and progression. As Rad6 is encoded by two genes, namely, () and (), in humans, we compared their expressions in melanomas and normal melanocytes. While both genes are weakly expressed in normal melanocytes, Rad6B is more robustly expressed in melanoma lines and patient-derived metastatic melanomas than RAD6A.

View Article and Find Full Text PDF

The continued rise of antibiotic-resistant infections coupled with the limited pipeline of new antimicrobials highlights the pressing need for the development of new antibacterial agents. One potential pathway for new agents is de novo purine biosynthesis as studies have shown that bacteria and lower eukaryotes synthesize purines differently than humans. Microorganisms utilize two enzymes, N-CAIR synthetase and N-CAIR mutase, to convert 5-aminoimidazole ribonucleotide (AIR) into 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) through the intermediate N-carboxy-5-aminoimidazole ribonucleotide (N-CAIR).

View Article and Find Full Text PDF

Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability.

View Article and Find Full Text PDF

Clostridium difficile infections (CDI), particularly those caused by the BI/NAP1/027 epidemic strains, are challenging to treat. One method to address this disease is to prevent the development of CDI by inhibiting the germination of C. difficile spores.

View Article and Find Full Text PDF

Carboxyphosphate, a suspected intermediate in ATP-dependent carboxylases, has not been isolated nor observed directly by experiment. Consequently, little is known concerning its structure, stability, and ionization state. Recently, carboxyphosphate as either a monoanion or dianion has been shown computationally to adopt a novel pseudochair conformation featuring an intramolecular charge-assisted hydrogen bond (CAHB).

View Article and Find Full Text PDF

N(5)-CAIR synthetase, an essential enzyme in microorganisms, converts 5-aminoimidazole ribonucleotide (AIR) and bicarbonate to N(5)-CAIR with the aid of ATP. Previous X-ray crystallographic analyses of Aspergillus clavatus N(5)-CAIR synthetase postulated that R271, H273, and K353 were important for bicarbonate binding and for catalysis. As reported here, site-directed mutagenesis of these residues revealed that R271 and H273 are, indeed, critical for bicarbonate binding and catalysis whereas all K353 mutations, even ones conservative in nature, are inactive.

View Article and Find Full Text PDF

A series of reducible polycationic copper chelators (RPCs) based on 1,4,8,11-tetraazacyclotetradecane (cyclam) were synthesized by Michael addition. Molecular weight of the polycations was controlled by reaction stoichiometry and reaction conditions, resulting in polymers with molecular weights ranging from 4400 to 13 800. The cyclam moieties in the polycations retained their ability to form complexes with Cu(II).

View Article and Find Full Text PDF

Several thieno[2,3-d]pyrimidinediones have been synthesized and examined for antibacterial activity against a range of gram-positive and gram-negative pathogens. Two compounds displayed potent activity (2-16 mg/L) against multi-drug resistant gram-positive organisms, including methicillin resistant, vancomycin-intermediate, vancomycin-resistant Staphylococcus aureus (MRSA, VISA, VRSA) and vancomycin-resistant enterococci (VRE). Only one of these agents possessed moderate activity (16-32 mg/L) against gram-negative strains.

View Article and Find Full Text PDF

The ATP-grasp enzymes consist of a superfamily of 21 proteins that contain an atypical ATP-binding site, called the ATP-grasp fold. The ATP-grasp fold is comprised of two α+β domains that "grasp" a molecule of ATP between them and members of the family typically have an overall structural design containing three common conserved focal domains. The founding members of the family consist of biotin carboxylase, d-ala-d-ala ligase and glutathione synthetase, all of which catalyze the ATP-assisted reaction of a carboxylic acid with a nucleophile via the formation of an acylphosphate intermediate.

View Article and Find Full Text PDF

The enormous success of antibiotics is seriously threatened by the development of resistance to most of the drugs available on the market. Thus, novel antibiotics are needed that are less prone to bacterial resistance and are directed toward novel biological targets. Antimicrobial peptides (AMPs) have attracted considerable attention due to their unique mode of action and broad spectrum activity.

View Article and Find Full Text PDF

A major genetic factor linked to the progression of type 1 diabetes occurs in the insulin-linked polymorphic repeat region (ILPR) located 363 bp upstream of the human insulin gene. Genetic studies have shown that individuals with class I repeats (30-60) are predisposed to the development of type 1 diabetes while individuals with longer repeats are protected. Previous research has suggested that some sequences found within the ILPR can adopt a G-quadruplex structure, and this finding has lead to speculation that G-quadruplexes may control insulin expression in certain circumstances.

View Article and Find Full Text PDF

N(5)-Carboxyaminoimidazole ribonucleotide synthetase (N(5)-CAIR synthetase), a key enzyme in microbial de novo purine biosynthesis, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to N(5)-CAIR. To date, this enzyme has been observed only in microorganisms, and thus, it represents an ideal target for antimicrobial drug development. Here we report the cloning, crystallization, and three-dimensional structural analysis of Aspergillus clavatus N(5)-CAIR synthetase solved in the presence of either Mg(2)ATP or MgADP and AIR.

View Article and Find Full Text PDF

The increase in the incidence of antibiotic-resistant infections is a major concern to healthcare workers and requires the development of novel antibacterial agents. Recently, we described a series of benzophenone-containing antibiotics which displayed activity against antibiotic-resistant bacteria. We have shown that these agents function by disrupting the bacterial membrane.

View Article and Find Full Text PDF

The increase in the incidence of both hospital- and community-acquired antibiotic-resistant infections is a major concern to the healthcare community. There have been only two new classes of antibiotics approved by the FDA over the past 40 years, and clearly there is a growing need for additional antimicrobial agents. In this paper, we present our work on the discovery of a class of benzophenone containing compounds that possess good activity against MRSA, VISA, VRSA, and VRE and moderate activity against E.

View Article and Find Full Text PDF

The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans.

View Article and Find Full Text PDF

G-quadruplexes are unusual structures formed from guanine-rich sequences of nucleic acids. G-quadruplexes have been postulated to play important roles in a number of biological systems including gene regulation and the inhibition of enzyme function. Recently, our laboratory reported on the synthesis and evaluation of a triaza-cyclopentaphenanthrene compound which bound to G-quadruplexes with good affinity and selectivity.

View Article and Find Full Text PDF

The enzyme aminoimidazole ribonucleotide (AIR) carboxylase catalyzes the synthesis of the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). Previously, we have shown that the compound 4-nitro-5-aminoimidazole ribonucleotide (NAIR) is a slow, tight binding inhibitor of the enzyme with a Ki of 0.34 nM.

View Article and Find Full Text PDF