Publications by authors named "Steven Fanara"

Article Synopsis
  • The Arabidopsis splicing factor SR45 plays a critical role in various biological processes, and its loss results in several developmental abnormalities, including delayed root growth and altered flower structures.
  • The study investigates the functions of the different domains in SR45, focusing on its expression patterns, nuclear localization, and interaction with other proteins and RNA.
  • Results reveal that SR45 localizes in the nucleus, has a specific RNA binding capacity, and connects vital mRNA splicing and surveillance systems, highlighting the importance of its domains in forming spliceosomal and exon-exon junction complex assemblies.
View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters.

View Article and Find Full Text PDF

The plant serine/arginine-rich (SR) splicing factor SR45 plays important roles in several biological processes, such as splicing, DNA methylation, innate immunity, glucose regulation, and abscisic acid signaling. A homozygous Arabidopsis sr45-1 null mutant is viable, but exhibits diverse phenotypic alterations, including delayed root development, late flowering, shorter siliques with fewer seeds, narrower leaves and petals, and unusual numbers of floral organs. Here, we report that the sr45-1 mutant presents an unexpected constitutive iron deficiency phenotype characterized by altered metal distribution in the plant.

View Article and Find Full Text PDF

In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered.

View Article and Find Full Text PDF

Unlabelled: A relatively small number of species in the large genus Streptomyces are pathogenic; the best characterized of these is Streptomyces scabies. The pathogenicity of S. scabies strains is dependent on the production of the nitrated diketopiperazine thaxtomin A, which is a potent plant cellulose synthesis inhibitor.

View Article and Find Full Text PDF