Wind damage from cyclones can devastate the forest canopy, altering environmental conditions in the understory that affect seedling growth and plant community regeneration. To investigate the impact of hurricane-induced increases in light and soil nutrients as a result of canopy defoliation, we conducted a two-way factorial light and nutrient manipulation in a shadehouse experiment. We measured seedling growth of the dominant canopy species in the four Everglades forest communities: pine rocklands ( var ), cypress domes (), hardwood hammocks, and tree islands ( and ).
View Article and Find Full Text PDFPremise: Wetland plants regularly experience physiological stresses resulting from inundation; however, plant responses to the interacting effects of water level and inundation duration are not fully understood.
Methods: We conducted a mesocosm experiment on two wetland species, sawgrass (Cladium jamaicense) and muhly grass (Muhlenbergia filipes), that co-dominate many freshwater wetlands in the Florida Everglades. We tracked photosynthesis, respiration, and growth at water levels of -10 (control), 10 (shallow), and 35 cm (deep) with reference to soil surface over 6 months.
The area of tropical secondary forests is increasing rapidly, but data on the physical and biological structure of the canopies of these forests are limited. To obtain such data and to measure the ontogeny of canopy structure during tropical rainforest succession, we studied patch-scale (5 m2) canopy structure in three areas of 18-36 year-old secondary forest in Costa Rica, and compared the results to data from old-growth forest at the same site. All stands were sampled with a stratified random design with complete harvest from ground level to the top of the canopy from a modular portable tower.
View Article and Find Full Text PDFRapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment.
View Article and Find Full Text PDFThe regional variability in tundra and boreal carbon dioxide (CO ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e.
View Article and Find Full Text PDFA warming Arctic has been associated with increases in aboveground plant biomass, specifically shrubs, and changes in vegetation cover. However, the magnitude and direction of changes in NDVI have not been consistent across different tundra types. Here we examine the responsiveness of fine-scale NDVI values to experimental warming at eight sites in northern Alaska, United States.
View Article and Find Full Text PDFClimate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed.
View Article and Find Full Text PDFIn the version of this Article originally published, the following sentence was missing from the Acknowledgements: "This work was supported by the Norwegian Research Council SnoEco project, grant number 230970". This text has now been added.
View Article and Find Full Text PDFAdvancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species.
View Article and Find Full Text PDFThe tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations.
View Article and Find Full Text PDFWarming-linked woody shrub expansion in the Arctic has critical consequences for ecosystem processes and climate feedbacks. The snow-shrub interaction model has been widely implicated in observed Arctic shrub increases, yet equivocal experimental results regarding nutrient-related components of this model have highlighted the need for a consideration of the increased meltwater predicted in expanding shrub stands. We used a 22-year snow manipulation experiment to simultaneously address the unexplored role of snow meltwater in arctic plant ecophysiology and nutrient-related components of the snow-shrub hypothesis.
View Article and Find Full Text PDFHave tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.
View Article and Find Full Text PDFChanges in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha yr lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink.
View Article and Find Full Text PDFWarmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient.
View Article and Find Full Text PDFPremise Of The Study: The cold season in the Arctic extends over 8 to 9 mo, yet little is known about vascular plant physiology during this period. Evergreen species photosynthesize under the snow, implying that they are exchanging water with the atmosphere. However, liquid water available for plant uptake may be limited at this time.
View Article and Find Full Text PDFClimate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska.
View Article and Find Full Text PDFPremise Of The Study: Understanding the relationship between plants and changing abiotic factors is necessary to document and anticipate the impacts of climate change.
Methods: We used data from long-term research sites at Barrow and Atqasuk, Alaska, to investigate trends in abiotic factors (snow melt and freeze-up dates, air and soil temperature, thaw depth, and soil moisture) and their relationships with plant traits (inflorescence height, leaf length, reproductive effort, and reproductive phenology) over time.
Key Results: Several abiotic factors, including increasing air and soil temperatures, earlier snowmelt, delayed freeze-up, drier soils, and increasing thaw depths, showed nonsignificant tendencies over time that were consistent with the regional warming pattern observed in the Barrow area.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003.
View Article and Find Full Text PDFFew studies have clearly linked long-term monitoring with in situ experiments to clarify potential drivers of observed change at a given site. This is especially necessary when findings from a site are applied to a much broader geographic area. Here, we document vegetation change at Barrow and Atqasuk, Alaska, occurring naturally and due to experimental warming over nearly two decades.
View Article and Find Full Text PDFThe goal of this study is to determine if the response of arctic plants to warming is consistent across species, locations and time. This study examined the impact of experimental warming and natural temperature variation on plants at Barrow and Atqasuk, Alaska beginning in 1994. We considered observations of plant performance collected from 1994-2000 "short-term" and those from 2007-2012 "long-term".
View Article and Find Full Text PDFInference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature.
View Article and Find Full Text PDFThis research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009-2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics.
View Article and Find Full Text PDFArctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown.
View Article and Find Full Text PDFUnderstanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change.
View Article and Find Full Text PDF