Publications by authors named "Steven F Lewis"

Purpose: The purpose of this study was to determine whether seven intermittent altitude exposures (IAE), in combination with either rest or exercise training, improves time-trial exercise performance and induces physiologic adaptations consistent with chronic altitude adaptation at 4300 m.

Methods: Ten adult lowlanders (26 +/- 2 yr; 78 +/- 4 kg; means +/- SE) completed cycle endurance testing during an acute exposure to a 4300-m-altitude equivalent (446 mm Hg) once before (pre-IAE) and once after (post-IAE) 7 d of IAE (4h x d(-1), 5 d x wk(-1), 4300 m). Cycle endurance testing consisted of two consecutive 15-min constant-work rate exercise bouts followed immediately by a time-trial exercise performance test.

View Article and Find Full Text PDF

Recent studies have demonstrated that brief daily IAE (intermittent altitude exposure) was equally as effective as continuous altitude residence in inducing physiological adaptations consistent with altitude acclimatization. Although the positive benefits of IAE have been clearly defined, the potential negative consequences of IAE on health, specifically the immune system, remain undefined. The present study determined the effects of IAE on WBC (white blood cell) and hormonal responses during rest and exercise at 4300 m altitude.

View Article and Find Full Text PDF

Acetazolamide can be taken at sea level to prevent acute mountain sickness during subsequent altitude exposure. Acetazolamide causes metabolic acidosis at sea level and altitude, and increases SaO2 (arterial oxygen saturation) at altitude. The aim of the present study was to determine whether acetazolamide impairs muscle endurance at sea level but not simulated altitude (4300 m for <3 h).

View Article and Find Full Text PDF

Acute mountain sickness (AMS) commonly occurs at altitudes exceeding 2000-2500 m and usually resolves after acclimatization induced by a few days of chronic residence at the same altitude. Increased ventilation and diuresis may contribute to the reduction in AMS with altitude acclimatization. The aim of the present study was to examine the effects of intermittent altitude exposures (IAE), in combination with rest and exercise training, on the incidence and severity of AMS, resting ventilation and 24-h urine volume at 4300 m.

View Article and Find Full Text PDF

Chronic altitude residence improves muscular performance at altitude, but the effect of intermittent altitude exposures (IAE) on muscular performance at altitude has not been defined. The purpose of this study was to determine the effects of 3 wk of IAE, in combination with rest and cycle training, on muscular performance at altitude. Six lowlanders (23 +/- 2 yr, 77 +/- 6 kg; means +/- SE) completed a cycle time trial and adductor pollicis endurance test at sea level and during a 30-h acute exposure to 4,300 m altitude equivalent (barometric pressure = 446 mmHg) once before (pre-IAE) and once after (post-IAE) a 3-wk period of IAE (4 h/day, 5 days/wk, 4,300 m).

View Article and Find Full Text PDF