Publications by authors named "Steven Eppell"

Collagen molecules are the base structural unit of tendons, which become denatured during mechanical overload. We recently demonstrated that during tendon stretch, collagen denaturation occurs at the yield point of the stress-strain curve in both positional and energy-storing tendons. We were interested in investigating how this load is transferred throughout the collagen hierarchy, and sought to determine the onset of collagen denaturation when collagen fibrils are stretched.

View Article and Find Full Text PDF

Treatment of bleeding disorders using transfusion of donor-derived platelets faces logistical challenges due to their limited availability, high risk of contamination, and short (5 to 7 days) shelf life. These challenges could be potentially addressed by designing platelet mimetics that emulate the adhesion, aggregation, and procoagulant functions of platelets. To this end, we created liposome-based platelet-mimicking procoagulant nanoparticles (PPNs) that can expose the phospholipid phosphatidylserine on their surface in response to plasmin.

View Article and Find Full Text PDF

Animals with elodont dentition and unfused mandible symphyses are hypothesized to have symmetric incisor morphology. Since these animals maintain their teeth by gnawing, they may provide physiologic feedback on mechanical function when unilateral mandible defects are created that manifest as ipsilateral changes in tooth structure. This defect model would potentially generate important information on the functional/mechanical properties of implants.

View Article and Find Full Text PDF

An electric charge standard with nanoscale resolution is created using the known charge distribution of a single tobacco mosaic virus coat protein combined with the known packing of these proteins in the virus capsid. This advances the ability to measure charge on nanometric samples. Experimental atomic force microscope (AFM) force-distance curves are collected under aqueous conditions with controlled pH and ion concentration.

View Article and Find Full Text PDF

Currently, titanium dental implant apposition to bone is achieved via osseointegration leading to ankylosis. A biomimetic Sharpey's fiber-type interface could be constructed around collagen fibrils robustly attached and projecting perpendicularly from the titanium surface. We present a proof-of-concept for a method to create upright-standing collagen nanofibrils covalently bonded to a titanium surface.

View Article and Find Full Text PDF

The specific aim of this study was to examine whether slow drilling speeds (15 rpm) produce pilot holes that result in different implant insertion torques than pilot holes made with higher speed drilling (1500 rpm). To accomplish this, a new method is presented for transferring samples from a drilling machine onto an implant insertion torque measuring apparatus while maintaining the same center of rotation. Simulated bone blocks of polyurethane were used with 2 densities of foam to mimic trabecular and cortical bone.

View Article and Find Full Text PDF

A theory is presented to obtain surface charge density on nanoscale objects from data in the snap-to-contact portion of an atomic force microscope force-separation curve. The mathematical model takes into account the tip's dielectric constant using the Self-Consistent Sum of Dipoles theory which includes the charge-charge interaction and the charge-dipole interaction with electrolyte-induced exponentially decaying screening, Debye and London dipolar force, and fluid viscosity including confined fluid layers to account for energy dissipation. Using previously published experimental data, the mathematical model is applied to measure the surface charge density on an individual nanoscale amine-modified polystyrene bead immobilized on the basal plane of highly oriented pyrolytic graphite in buffered aqueous solution.

View Article and Find Full Text PDF

We prove that the Euler-Bernoulli elastic beam theory can be reliably used to describe the dynamics of an atomic force microscope cantilever during the far from equilibrium snap-to-contact event. In conventional atomic force microscope operation, force-separation curves are obtained by post-processing voltage versus time traces produced by measuring one point on the cantilever close to the hanging end. In this article, we assess the validity of the Euler-Bernoulli equation during the snap-to-contact event.

View Article and Find Full Text PDF

Material is reviewed that consists of reconstituted collagen fibril gel mineralized in a manner that produces biomimetically sized nanoapatites intimately associated with the fibrils. This gel is formed into usable shapes with a modulus and strength that allow it to be surgically press fitted into bony defects. The design paradigm for the material is that the nanoapatites will dissolve into soluble Ca as the collagen is degraded into RGD-containing peptide fragments due to osteoclastic action.

View Article and Find Full Text PDF

The frequency-dependent complex impedance of an atomic force microscope photodetector is measured. The inverse problem is solved obtaining the voltage that would have been collected with a hypothetical, perfectly flat-frequency-response photodetector from the experimentally available voltage. This information is used to study the distortion that the true input signal undergoes as it passes through the photodetector on the way to becoming the experimentally measured output signal.

View Article and Find Full Text PDF

An exploratory pilot study shows that a rodent mandibular defect model is useful in determining the biological response to a nanophase collagen/apatite composite designed as a biomimetic load-bearing bone substitute. Using a critical size defect, eight groups of rats (n = 3) were implanted with four renditions of the nanophase bone substitute (NBS) biomaterial. Each rendition was tested with and without recombinant human bone morphogenetic protein 2 (BMP2).

View Article and Find Full Text PDF

A new method is presented to extract collagen fibrils from mammalian tendon tissue. Mammalian tendons are treated with a trypsin-based extraction medium and gently separated with tweezers in an aqueous solution. Collagen fibrils released in the solution are imaged using both dark-field light microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

A brief overview of isolated collagen fibril mechanics testing is followed by presentation of the first results testing fibrils isolated from load-bearing mammalian tendons using a microelectromechanical systems platform. The in vitro modulus (326 ± 112 MPa) and fracture stress (71 ± 23 MPa) are shown to be lower than previously measured on fibrils extracted from sea cucumber dermis and tested with the same technique. Scanning electron microscope images show the fibrils can fail with a mechanism that involves circumferential rupture, whereas the core of the fibril stays at least partially intact.

View Article and Find Full Text PDF

The specific aim of this study was to examine the relative contributions to the implant insertion torque value (ITV) by cortical and trabecular components of an in vitro bone model. Simulated bone blocks of polyurethane were used with 2 densities of foam (0.08 g/cm(3) to mimic trabecular bone and 0.

View Article and Find Full Text PDF

We obtain analytical expressions for electrostatic forces between an atomic force microscope tip and a sample immersed in an electrolyte. These simple expressions relate force to tip-sample separation explicitly incorporating tip size, solvent ion size, and solvent ion concentration. If the ions are much smaller than the tip-sample gap, the force decays monotonically, a consequence of the corresponding monotonic decays of the correlation function in the Debye-Hückel context.

View Article and Find Full Text PDF

Purpose Of Review: Craniofacial surgeons must continually make decisions about how to best reconstruct the craniomaxillofacial skeleton (CFS). A high priority has been placed on the search for bone substitute materials (BSMs) that are both mechanically and biologically optimized for these reconstructions. This review is intended to present the complexity of this undertaking to physicians and scientists by reviewing the technological advances published in the last 2 years.

View Article and Find Full Text PDF

A collagen-apatite composite designed as a load-bearing bone substitute implant is used to characterize the relationship between implant morphology and in vivo behavior. This nanophase bone substitute (NBS) is studied morphologically using a nondestructive imaging technique and biologically using the rodent subcutaneous model. Porosity and pore interconnectivity are correlated with histological outcomes showing cellular invasion occurs with average pore sizes below 100 μm.

View Article and Find Full Text PDF

Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis.

View Article and Find Full Text PDF

We develop the self-consistent sum of dipoles (SCSD) theory for the purpose of recovering charge densities present on nanostructures using scanning force microscope (SFM) force-separation experiments. The dielectric probe is discretized into volume elements characterized by their atomic polarizabilities. Magnitudes of the induced dipole in each element are calculated based on discrete charges placed on the surfaces, dipole-dipole interactions, and dielectric and ionic properties of the surrounding medium.

View Article and Find Full Text PDF

Mechanical testing of collagenous tissues at different length scales will provide improved understanding of the mechanical behavior of structures such as skin, tendon, and bone, and also guide the development of multiscale mechanical models. Using a microelectromechanical-systems (MEMS) platform, stress-strain response curves up to failure of type I collagen fibril specimens isolated from the dermis of sea cucumbers were obtained in vitro. A majority of the fibril specimens showed brittle fracture.

View Article and Find Full Text PDF

Neutrophil adhesion to pulmonary microvascular endothelial cells (ECs) initiates intracellular signaling, resulting in remodeling of F-actin cytoskeletal structure of ECs. The present study determined the mechanical properties of ECs and the changes induced by neutrophil adhesion by atomic force microscopy. The elastic moduli of ECs were compared before neutrophils were present, as soon as neutrophil adhesion was detected, and 1 minute later.

View Article and Find Full Text PDF

Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension.

View Article and Find Full Text PDF

Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils.

View Article and Find Full Text PDF

This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered.

View Article and Find Full Text PDF

Mechanical properties of living cells can be determined using atomic force microscopy (AFM). In this study, a novel analysis was developed to determine the mechanical properties of adherent monolayers of pulmonary microvascular endothelial cells (ECs) using AFM and finite element modeling, which considers both the finite thickness of ECs and their nonlinear elastic properties, as well as the large strain induced by AFM. Comparison of this model with the more traditional Hertzian model, which assumes linear elastic behavior, small strains, and infinite cell thickness, suggests that the new analysis can predict the mechanical response of ECs during AFM indentation better than Hertz's model, especially when using force-displacement data obtained from large indentations (>100 nm).

View Article and Find Full Text PDF