Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFMany of the features of SERS, such as its high sensitivity, molecular specificity and speed of analysis make it attractive as an analytical technique. However, SERS currently remains a specialist technique which has not yet entered the mainstream of analytical chemistry. Therefore, this review draws out the underlying principles for analytical SERS and provides practical tips and tricks for SERS quantitation.
View Article and Find Full Text PDFCompressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible.
View Article and Find Full Text PDFThe interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications.
View Article and Find Full Text PDFConspectusWhen the size of materials is reduced, their volume decreases much faster than their surface area, which in the most extreme case leads to 2D nanomaterials which are "all surface". Since atoms at the surface have free energies, electronic states, and mobility which are very different from bulk atoms, nanomaterials that have large surface-to-volume ratios can display remarkable new properties compared to their bulk counterparts. More generally, the surface is where nanomaterials interact with their environment, which in turn places surface chemistry at the heart of catalysis, nanotechnology, and sensing applications.
View Article and Find Full Text PDFBiofilms are complex environments where matrix effects from components such as extracellular polymeric substances and proteins can strongly affect SERS performance. Here the interactions between SERS-enhancing Ag and Au particles were studied using biofilms (-biofilms), which were more homogenous than biofilm samples. This allowed systematic quantitative studies, where samples could be accurately diluted and analysed, to be carried out.
View Article and Find Full Text PDFPickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings.
View Article and Find Full Text PDFBasal cell carcinoma (BCC) is the most common form of skin cancer and responsible for most of the cancer related morbidities and pose a significant public health concern worldwide. Surgery treatment modality is able to clear the BCC, yet it mostly leads to scar formation. Plasmonic photothermal therapy (PPTT) which involves using gold nanostructures and near-infrared (NIR) light to kill the BCC cells by local heating is associated with excellent tissue preservation and healing without scarring.
View Article and Find Full Text PDFSERS is currently being explored as a rapid method for identification of bacteria but variation in the experimental procedures has resulted in considerable variation in the spectra reported for a range of bacterial species. Here, we show that mixing bacteria with a conventional citrate-reduced silver colloid (CRSC) and drying the resulting suspension yield highly reproducible spectra. These signals were due to intracellular components released when the structure of the bacteria was disrupted during sample preparation.
View Article and Find Full Text PDFElectron/proton transfers in water proceeding from ground/excited states are the elementary reactions of chemistry. These reactions of an iconic class of molecules─polypyridineRu(II)─are now controlled by capturing or releasing three of them with hosts that are shape-switchable. Reversible erection or collapse of the host walls allows such switchability.
View Article and Find Full Text PDFSpiky/hollow metal nanoparticles have applications across a broad range of fields. However, the current bottom-up methods for producing spiky/hollow metal nanoparticles rely heavily on the use of strongly adsorbing surfactant molecules, which is undesirable because these passivate the product particles' surfaces. Here we report a high-yield surfactant-free synthesis of spiky hollow Au-Ag nanostars (SHAANs).
View Article and Find Full Text PDFAnal Chem
August 2021
DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration.
View Article and Find Full Text PDFSelf-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is an emerging analytical technique for chemical analysis, which is favourable due to its combination of short measurement time, high sensitivity and molecular specificity. However, the application of SERS is still limited, largely because in real samples the analyte is often present in a complex matrix that contains micro/macro particles that block the probe laser, as well as molecular contaminants that compete for the enhancing surface. Here, we show a simple and scalable spray-deposition technique to fabricate SERS-active paper substrates which combine sample filtration and enhancement in a single material.
View Article and Find Full Text PDFTherapeutic drug monitoring (TDM) is important for many therapeutic regimens and has particular relevance for anticancer drugs which often have serious effects and whose optimum dosage can vary significantly between different patients. Many of the features of surface enhanced (resonance) Raman spectroscopy (SE(R)RS) suggest it should be very suitable for TDM of anticancer drugs and some initial studies which explore the potential of SE(R)RS for TDM of anticancer drugs have been published. This review brings this work together in an attempt to draw some general observations about key aspects of the approach, including the nature of the substrate used, matrix interference effects and factors governing adsorption of the target molecules onto the enhancing surface.
View Article and Find Full Text PDFWe report, for the first time, crosslinked polymeric microneedle (MN) arrays and single needles (2 mm and 4.5 mm length) coated with gold nanorods (GnRs) to induce deep hyperthermia in a 3 mm-thickness skin model upon near infrared (NIR) laser irradiation. Using excised neonatal porcine skin as tissue model, it was seen that insertion capabilities of single prototypes were not affected by the coating, as around 80% of their length was inserted before and after coating.
View Article and Find Full Text PDFMicrobial fouling is a costly issue, which impacts a wide range of industries, such as healthcare, food processing, and construction industries, and improved strategies to reduce the impact of fouling are urgently required. Slippery liquid-infused porous surfaces (SLIPSs) have recently been developed as a bioinspired approach to prevent antifouling. Here, we report the development of slippery, superhydrophilic surfaces by infusing roughened poly(vinyl chloride) (PVC) substrates with phosphonium ionic liquids (PILs).
View Article and Find Full Text PDFAu/Ag colloids aggregated with simple salts are amongst the most commonly used substrates in surface-enhanced (resonance) Raman spectroscopy (SE(R)RS). However, salt-induced aggregation is a dynamic process, which means that SE(R)RS enhancements vary with time and that measurements therefore need to be taken at a fixed time point, normally within a short time-window of a few minutes. Here, we present an emulsion templated method which allows formation of densely-packed quasi-spherical Au/Ag colloidal aggregates.
View Article and Find Full Text PDFExperimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature.
View Article and Find Full Text PDFThe discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products.
View Article and Find Full Text PDFHere, we present surface-enhanced Raman data for the calculation of signal uniformity and enhancement factor in SENSERS (surface-exposed nanoparticle sheet enhanced Raman spectroscopy). SEM was used to characterize the microstructure of the solid sample. The interaction between the solid sample and surface-exposed nanoparticle sheet was characterized using SERS and SEM.
View Article and Find Full Text PDFThe data presented in this article is related to the research article entitled "A One-Pot Method for Building Colloidal Nanoparticles into Bulk Dry Powders with Nanoscale Magnetic, Plasmonic and Catalytic Functionalities" (Ye et al., 2019) The data shows the hydrophobicity of the nanoparticle (NP) building blocks used for constructing NMPs obtained through contact angle measurements, along with the effect of NP hydrophobicity on the stability of the parent Pickering emulsions. SEM data of the morphology of NMPs is presented.
View Article and Find Full Text PDFThe data presented in this article is related to the research article entitled "A One-Pot Method for Building Colloidal Nanoparticles into Bulk Dry Powders with Nanoscale Magnetic, Plasmonic and Catalytic Functionalities" (Ye et al., 2019). The data shows the hydrophobicity of the nanoparticle (NP) building blocks used for constructing NMPs obtained through contact angle measurements, along with the effect of NP hydrophobicity on the stability of the parent Pickering emulsions.
View Article and Find Full Text PDFPharmacological therapy of osteoporosis reduces bone loss and risk of fracture in patients. Modulation of bone mineral density cannot explain all effects. Other aspects of bone quality affecting fragility and ways to monitor them need to be better understood.
View Article and Find Full Text PDF