We report malt quality QTLs relevant to breeding with greater precision than previous mapping studies. The distribution of favorable alleles suggests strategies for marker-assisted breeding and germplasm exchange. This study leverages the breeding data of 1,862 barley breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley.
View Article and Find Full Text PDFBackground: The widespread acceptance of reduced-tillage farming in cereal cropping systems in the Pacific Northwest of the United States has resulted in increased use of herbicides for weed control. However, soil residual concentrations of widely used imidazalone herbicides limit the cultivation of barley, which is more sensitive than wheat. In addition, increased severity of the root rot disease caused by Rhizoctonia solani is associated with reduction in tillage.
View Article and Find Full Text PDFInduced mutagenesis can be an effective way to increase variability in self-pollinated crops for a wide variety of agronomically important traits. Crop resistance to a given herbicide can be of practical value to control weeds with efficient chemical use. In some crops (for example, wheat, maize, and canola), resistance to imidazolinone herbicides (IMIs) has been introduced through mutation breeding and is extensively used commercially.
View Article and Find Full Text PDFBackground: A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies.
View Article and Find Full Text PDFGenetic control of seed dormancy in barley (Hordeum vulgare L.) has mostly been described in terms of quantitative variation. Although some molecular markers for dormancy QTL have been identified, the corresponding genes involved in the regulation of the process have not been cloned.
View Article and Find Full Text PDF