Publications by authors named "Steven E Travis"

Heritability and evolvability estimates of adult traits from free-living bird populations can be used to gauge the ability of populations to respond to selection, but are rare due to difficulties in gathering detailed pedigree information. The capacity to respond to selection is particularly important for species occupying managed habitats such as agricultural grasslands because of the potential for humans to accidentally influence traits. We calculated heritability and evolvability of six morphological traits in a population of Savannah Sparrows (Passerculus sandwichensis) breeding in a large agricultural landscape.

View Article and Find Full Text PDF

The aim of this project was to compare the phenotypic responses of global populations of Lythrum salicaria in cold/dry and hot/humid environments to determine if phenotypic plasticity varied between the native and invasive ranges, and secondarily if this variation was linked to genetic diversity. Common garden studies were conducted in Třeboň, Czech Republic, and Lafayette, Louisiana, USA (cold/dry vs. hot/humid garden, respectively), using populations from latitudinal gradients in Eurasia and North America.

View Article and Find Full Text PDF

Although microbial communities have been shown to vary among plant genotypes in a number of experiments in terrestrial ecosystems, relatively little is known about this relationship under natural conditions and outside of select model systems. We reasoned that a salt marsh ecosystem, which is characterized by twice-daily flooding by tides, would serve as a particularly conservative test of the strength of plant-microbial associations, given the high degree of abiotic regulation of microbial community assembly resulting from alternating periods of inundation and exposure. Within a salt marsh in the northeastern United States, we characterized genotypes of the foundational plant using microsatellite markers, and bacterial metagenomes within marsh soil based on pyrosequencing.

View Article and Find Full Text PDF

We explored the nature and impact of competitive interactions between the salt marsh foundational plant Spartina alterniflora and invasive Phragmites australis in New England under varying levels of anthropogenic influence from nutrient loading and temperature warming. Plants were grown with and without competition in mesocosms over a four-month growing season. Mesocosms were split evenly among three levels of nutrient additions and two temperatures varying by an average of ~3° C, manipulated using small greenhouses.

View Article and Find Full Text PDF

Premise: Studies of hybridizing species are facilitated by the availability of species-specific molecular markers for identifying early- and later-generation hybrids. Cattails are a dominant feature of wetland communities, and a better understanding of the prevalence of hybrids is needed to assess the ecological and evolutionary effects of hybridization. Hybridization between Typha angustifolia and T.

View Article and Find Full Text PDF

The success of population-based ecological restoration relies on the growth and reproductive performance of selected donor materials, whether consisting of whole plants or seed. Accurately predicting performance requires an understanding of a variety of underlying processes, particularly gene flow and selection, which can be measured, at least in part, using surrogates such as neutral marker genetic distances and simple latitudinal effects. Here we apply a structural equation modeling approach to understanding and predicting performance in a widespread salt marsh grass, Spartina alterniflora, commonly used for ecological restoration throughout its native range in North America.

View Article and Find Full Text PDF