Publications by authors named "Steven E Pfeiffer"

IFN-γ-inducible lysosomal thiol reductase (GILT) is an enzyme located in the Lamp-2-positive compartments of APC. GILT(-/-) mice are phenotypically normal, but their T cells exhibit reduced proliferation to several exogenously administered Ags that include cysteine residues and disulfide bonds. We undertook the present studies to determine if GILT(-/-) mice would process exogenously administered myelin oligodendrocyte glycoprotein (MOG), which contains disulfide bonds, to generate experimental autoimmune encephalomyelitis (EAE) to the endogenous protein.

View Article and Find Full Text PDF

Demyelination coincides with numerous changes of gene expression in the central nervous system (CNS). Cystatin F, which is a papain-like lysosomal cysteine proteinase inhibitor that is normally expressed by immune cells and not in the brain, is massively induced in the CNS during acute demyelination. We found that microglia, which are monocyte/macrophage-lineage cells in the CNS, express cystatin F only during demyelination.

View Article and Find Full Text PDF

Myelin is highly enriched in galactocerebroside (GalCer) and its sulfated form sulfatide. Mice, unable to synthesize GalCer and sulfatide (CGT(null)) or sulfatide alone (CST(null)), exhibit disorganized paranodal structures and progressive dysmyelination. To obtain insights into the molecular mechanisms underlying these defects, we examined myelin composition of these mutants by two-dimensional differential fluorescence intensity gel electrophoresis proteomic approach and immunoblotting.

View Article and Find Full Text PDF

Myelin, formed by oligodendrocytes (OLs) in the CNS, is critical for axonal functions, and its damage leads to debilitating neurological disorders such as multiple sclerosis. Understanding the molecular mechanisms of myelination and the pathogenesis of human myelin disease has been limited partly by the relative lack of identification and functional characterization of the repertoire of human myelin proteins. Here, we present a large-scale analysis of the myelin proteome, using the shotgun approach of 1-dimensional PAGE and liquid chromatography/tandem MS.

View Article and Find Full Text PDF

Rab3a, a small GTPase important for exocytosis, is uniquely up-regulated as oligodendrocytes enter terminal differentiation and initiate myelin biosynthesis. In this study, we analyze the role of this protein in oligodendrocyte morphological differentiation by using Rab3a overexpression and siRNAi-mediated Rab3a silencing. We found that Rab3a silencing delayed mature oligodendrocyte morphological differentiation but did not interfere with lineage progression of OL progenitors; this is consistent with the high levels of Rab3a expressed by mature oligodendrocytes compared with progenitor cells.

View Article and Find Full Text PDF

Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement.

View Article and Find Full Text PDF

Understanding the rich complement of sugar chains found in cellular membranes is impeded by the complexity of cell types and membrane diversity. To overcome this, we have analyzed the N-linked sugar chain composition of the glycoproteins of CNS myelin, an elaboration of the plasma membranes of oligodendrocytes (OLs) that result in a multilamellar wrapping of neuronal axons, facilitating nerve conduction with dramatic savings of space and energy. Due to an usually high lipid to protein ratio, myelin can be separated readily from other heavier membranes on sucrose gradients and further fractionated into subdomains related to myelin structure and function, including compact myelin and myelin-associated axolemmal membrane (Menon et al.

View Article and Find Full Text PDF

Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport and cytoskeletal dynamics. Recent studies indicate that soluble neuronal signals may control the surface expression of proteolipid protein, a process that involves reduced endocytosis and/or increased transport carrier recruitment from an intracellular pool.

View Article and Find Full Text PDF

In the central nervous system, oligodendrocytes synthesize vast amounts of myelin, a multilamellar membrane wrapped around axons that dramatically enhances nerve transmission. A complex apparatus appears to coordinate trafficking of proteins and lipids during myelin synthesis, but the molecular interactions involved are not well understood. We demonstrate that oligodendrocytes express several key molecules necessary for the targeting of transport vesicles to areas of rapid membrane growth, including the exocyst components Sec8 and Sec6 and the multidomain scaffolding proteins CASK and Mint1.

View Article and Find Full Text PDF

Antibodies to myelin components are routinely detected in multiple sclerosis patients. However, their presence in some control subjects has made it difficult to determine their contribution to disease pathogenesis. Immunization of C57BL/6 mice with either rat or human myelin oligodendrocyte glycoprotein (MOG) leads to experimental autoimmune encephalomyelitis (EAE) and comparable titers of anti-MOG antibodies as detected by ELISA.

View Article and Find Full Text PDF

Antibody-induced demyelination is an important component of pathology in multiple sclerosis. In particular, antibodies to myelin oligodendrocyte glycoprotein (MOG) are elevated in multiple sclerosis patients, and they have been implicated as mediators of demyelination. We have shown previously that antibody cross-linking of MOG in oligodendrocytes results in the repartitioning of MOG into glycosphingolipid-cholesterol membrane microdomains ("lipid rafts"), followed by changes in the phosphorylation of specific proteins, including dephosphorylation of beta-tubulin and the beta subunit of the trimeric G protein and culminating in rapid and dramatic morphological alterations.

View Article and Find Full Text PDF

Myelin is a dynamic, functionally active membrane necessary for rapid action potential conduction, axon survival, and cytoarchitecture. The number of debilitating neurological disorders that occur when myelin is disrupted emphasizes its importance. Using high-resolution 2D gel electrophoresis, mass spectrometry, and immunoblotting, we have developed an extensive proteomic map of proteins present in myelin, identifying 98 proteins corresponding to at least 130 of the approximately 200 spots on the map.

View Article and Find Full Text PDF

Paranodal axoglial junctions in myelinated nerve fibers are essential for efficient action potential conduction and ion channel clustering. We show here that, in the mature CNS, a fraction of the oligodendroglial 155 kDa isoform of neurofascin (NF-155), a major constituent of paranodal junctions, has key biochemical characteristics of a lipid raft-associated protein. However, despite its robust expression, NF-155 is detergent soluble before paranodes form and in purified oligodendrocyte cell cultures.

View Article and Find Full Text PDF

Myelin-axolemmal interactions regulate many cellular and molecular events, including gene expression, oligodendrocyte survival and ion channel clustering. Here we report the biochemical fractionation and enrichment of distinct subcellular domains from myelinated nerve fibers. Using antibodies against proteins found in compact myelin, non-compact myelin and axolemma, we show that a rigorous procedure designed to purify myelin also results in the isolation of the myelin-axolemmal complex, a high-affinity protein complex consisting of axonal and oligodendroglial components.

View Article and Find Full Text PDF

Two-dimensional gel electrophoresis (2-DE) has become a powerful and widely used technique for proteomic analyses. However, the limited ability of 2-DE to resolve transmembrane and glycosylphosphatidylinositol (GPI)-anchored proteins has slowed the identification of proteins from membrane-rich biological samples. Myelin is an unusually lipid-rich membrane with relatively few major proteins but many quantitatively minor proteins, most of which have an unknown identity and/or function.

View Article and Find Full Text PDF

Detergent-insoluble, glycosphingolipid-cholesterol-enriched microdomains (lipid rafts) have been implicated in both protein trafficking and signal transduction. Previously we identified in oligodendrocytes and myelin the lipid raft-associated, integral membrane protein myelin vesicular protein of 17 kDa (MVP17)/rMAL. Here we have examined the subcellular localization and/or detergent insolubility of native and recombinant MVP17/rMAL in transfected oligodendrocytes and COS-7 cells and purified myelin.

View Article and Find Full Text PDF

Glycosphingolipids and cholesterol form lateral assemblies, or lipid 'rafts', within biological membranes. Lipid rafts are routinely studied biochemically as low-density, detergent-insoluble complexes (in non-ionic detergents at 4 degrees C; DIGs, detergent-insoluble glycosphingolipid/cholesterol microdomains). Recent discrepancies recommended a re-evaluation of the conditions used for the biochemical analysis of lipid rafts.

View Article and Find Full Text PDF