Publications by authors named "Steven E Churchill"

How we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students' racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students' racial essentialism and opposition to policies to increase equity.

View Article and Find Full Text PDF

Ancient DNA from, Neandertal and modern human fossils, and comparative morphological analyses of them, reveal a complex history of interbreeding between these lineages and the introgression of Neandertal genes into modern human genomes. Despite substantial increases in our knowledge of these events, the timing and geographic location of hybridization events remain unclear. Six measures of facial size and shape, from regional samples of Neandertals and early modern humans, were used in a multivariate exploratory analysis to try to identify regions in which early modern human facial morphology was more similar to that of Neandertals, which might thus represent regions of greater introgression of Neandertal genes.

View Article and Find Full Text PDF

Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in . We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column ('pyramidal configuration').

View Article and Find Full Text PDF

A primate's body mass covaries with numerous ecological, physiological, and behavioral characteristics. This versatility and potential to provide insight into an animal's life has made body mass prediction a frequent and important objective in paleoanthropology. In hominin paleontology, the most commonly employed body mass prediction equations (BMPEs) are "mechanical" and "morphometric": uni- or multivariate linear regressions incorporating dimensions of load-bearing skeletal elements and stature and living bi-iliac breadth as predictor variables, respectively.

View Article and Find Full Text PDF

The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H.

View Article and Find Full Text PDF

Objectives: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state.

View Article and Find Full Text PDF

Humans are thought to exhibit an unusual suite of life history traits relative to other primates, with a longer lifespan, later age at first reproduction, and shorter interbirth interval. These assumptions are key components of popular hypotheses about human life history evolution, but they have yet to be investigated phylogenetically. We applied two phylogenetic comparative methods to investigate whether these human life history traits differ from expectations based on other primates: one fits and selects between Brownian and Ornstein-Uhlenbeck models of trait evolution; the other tests for phylogenetic outliers by predicting phenotypic characteristics based on trait covariation and phylogeny for a species of interest.

View Article and Find Full Text PDF

Objectives: Predicting body mass is a frequent objective of several anthropological subdisciplines, but there are few published methods for predicting body mass in immature humans. Because most reference samples are composed of adults, predicting body mass outside the range of adults requires extrapolation, which may reduce the accuracy of predictions. Prediction equations developed from a sample of immature humans would reduce extrapolation for application to small-bodied target individuals, and should have utility in multiple predictive contexts.

View Article and Find Full Text PDF

In the hominin fossil record, pelvic remains are sparse and are difficult to attribute taxonomically when they are not directly associated with craniodental material. Here we describe the pelvic remains from the Dinaledi Chamber in the Rising Star cave system, Cradle of Humankind, South Africa, which has produced hominin fossils of a new species, Homo naledi. Though this species has been attributed to Homo based on cranial and lower limb morphology, the morphology of some of the fragmentary pelvic remains recovered align more closely with specimens attributed to the species Australopithecus afarensis and Australopithecus africanus than they do with those of most (but not all) known species of the genus Homo.

View Article and Find Full Text PDF

Homo erectus and later humans have enlarged body sizes, reduced sexual dimorphism, elongated lower limbs, and increased encephalization compared to Australopithecus, together suggesting a distinct ecological pattern. The mosaic expression of such features in early Homo, including Homo habilis, Homo rudolfensis, and some early H. erectus, suggests that these traits do not constitute an integrated package.

View Article and Find Full Text PDF

The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to . Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains.

View Article and Find Full Text PDF

Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e.

View Article and Find Full Text PDF

The evolution of the hominin pelvis is generally seen as involving two broad stages: the establishment of bipedal pelvic morphology by the mid-Pliocene (or earlier), followed by architectural changes necessary to enlarge the birth canal in response to increased encephalization in Pleistocene members of the genus Homo. Pelvic and proximal femoral morphology in early Homo (namely H. erectus) has been seen as transitional between these stages, reflecting structural changes necessitated by greater body size (and perhaps moderate increases in brain size) overlain upon a basically primitive pelvic architecture.

View Article and Find Full Text PDF

Cervical vertebrae are rare in the early hominin fossil record, presenting a challenge for understanding the evolution of the neck and head carriage in hominin evolution. Here, we examine the cervical vertebrae of Australopithecus sediba, which unlike other South African taxa is known from associated cervical vertebrae. The A.

View Article and Find Full Text PDF

Hominin evolution featured shifts from a trunk shape suitable for climbing and housing a large gut to a trunk adapted to bipedalism and higher quality diets. Our knowledge regarding the tempo, mode, and context in which these derived traits evolved has been limited, based largely on a small-bodied Australopithecus partial skeleton (A.L.

View Article and Find Full Text PDF

This paper describes the 108 femoral, patellar, tibial, and fibular elements of a new species of Homo (Homo naledi) discovered in the Dinaledi chamber of the Rising Star cave system in South Africa. Homo naledi possesses a mosaic of primitive, derived, and unique traits functionally indicative of a bipedal hominin adapted for long distance walking and possibly running. Traits shared with australopiths include an anteroposteriorly compressed femoral neck, a mediolaterally compressed tibia, and a relatively circular fibular neck.

View Article and Find Full Text PDF

The evolutionary transition from an ape-like to human-like upper extremity occurred in the context of a behavioral shift from an upper limb predominantly involved in locomotion to one adapted for manipulation. Selection for overarm throwing and endurance running is thought to have further shaped modern human shoulder girdle morphology and its position about the thorax. Homo naledi (Dinaledi Chamber, Rising Star Cave, Cradle of Humankind, South Africa) combines an australopith-like cranial capacity with dental characteristics akin to early Homo.

View Article and Find Full Text PDF

Adult human foragers expend roughly 30-60 kcal per km in unburdened walking at optimal speeds.(1,2) In the context of foraging rounds and residential moves, they may routinely travel distances of 50-70 km per week, often while carrying loads.(3) Movement on the landscape, then, is arguably the single most expensive item in the activity budgets of hunter-gatherers.

View Article and Find Full Text PDF

A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation.

View Article and Find Full Text PDF

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H.

View Article and Find Full Text PDF

We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H.

View Article and Find Full Text PDF

Sex determination is critical for developing the biological profile of unidentified skeletal remains. When more commonly used elements (os coxa, cranium) for sexing are not available, methods utilizing other skeletal elements are needed. This study aims to assess the degree of sexual dimorphism of the lumbar vertebrae and develop discriminant functions for sex determination from them, using a sample of South African blacks from the Raymond A.

View Article and Find Full Text PDF

Neandertals and Homo sapiens are known to differ in scapular glenoid fossa morphology. Functional explanations may be appropriate for certain aspects of glenoid fossa morphology; however, other factors--e.g.

View Article and Find Full Text PDF

The shape of the thorax of early hominins has been a point of contention for more than 30 years. Owing to the generally fragmentary nature of fossil hominin ribs, few specimens have been recovered that have rib remains complete enough to allow accurate reassembly of thoracic shape, thus leaving open the question of when the cylindrical-shaped chest of humans and their immediate ancestors evolved. The ribs of Australopithecus sediba exhibit a mediolaterally narrow, ape-like upper thoracic shape, which is unlike the broad upper thorax of Homo that has been related to the locomotor pattern of endurance walking and running.

View Article and Find Full Text PDF