In soils, enzymes are crucial to catalyzing reactions and cycling elements such as carbon (C), nitrogen (N), and phosphorus (P). Although these soil enzymes are sensitive to metals, they are often disregarded in risk assessments, and regulatory laws governing their existence are unclear. Nevertheless, there is a need to develop regulatory standards for metal mixtures that protect biogeochemical cycles because soil serve as a sink for metals and exposures occur as mixtures.
View Article and Find Full Text PDFSoils are habitat to a variety of flora and fauna in a linked ecosystem which provides essential ecosystem services. In soil, metals can accumulate at high concentrations, because of anthropogenic activities, leading to toxic effects, threatening the ecosystem and the services it provides. In most real-world contamination scenarios, metals occur as complex mixtures which can interact and produce different toxicity than predicted from individual metal data.
View Article and Find Full Text PDFThe goal of this study was to incorporate community data into the effect assessment of environmental and regulatory relevant metal mixtures. In this experiment three fixed mixture ratios (Canadian soil quality guideline ratio - CSQG; Agricultural, residential and Loamy ratio - ARL; and Sudbury ratio - SUD) were tested in a natural community microcosm with 11 doses for each mixture ratio. The effect of metal mixtures on the community was measured using the community effect concentration (EC) concept which assumes that as contamination increases, the community similarity between test and control treatments decreases producing a dose response curve allowing the calculation of community effect concentrations.
View Article and Find Full Text PDFFor regulatory purposes, the concentration addition model is the default first tier for assessing joint-action toxicity of metal mixtures. Although many researchers have evaluated binary and ternary mixtures, fewer have investigated joint-action toxicity in more complex mixtures, where deviations from additivity are more likely due to the greater number of potential interactions. In this study, we tested fixed ratios of five metals (lead, copper, nickel, zinc, cobalt) as metal oxide mixtures on three soil invertebrate species (Enchytraeus crypticus, Folsomia candida, Oppia nitens) at different dose effect levels (EC10-EC90) in an acid sandy forest and a loamy soil.
View Article and Find Full Text PDFSoils provide numerous ecosystem services (ESs) such as food production and water purification. These ESs result from soil organism interactions and activities, which are supported by the soil physicochemical properties. Risk assessment for this complex system requires understanding the relationships among its components, both in the presence and absence of stressors.
View Article and Find Full Text PDFIn soil metal ecotoxicology research, dosing is usually performed with metal salts, followed by leaching to remove excess salinity. This process also removes some metals, affecting metal mixture ratios as different metals are removed by leaching at different rates. Consequently, alternative dosing methods must be considered for fixed ratio metal mixture research.
View Article and Find Full Text PDFMetals are present as mixtures in the environment, yet testing such complex mixture poses design and technical challenges. One possible solution is the use of fixed ratios, i.e.
View Article and Find Full Text PDFUsing data from the 2001 to 2004 US National Health and Nutrition Examination Survey (NHANES) on the number and placement of tooth restorations in adults, we quantified daily doses due to leaching of elements from gold (Au) alloy and ceramic restorative materials. The elements with the greatest leaching rates from these materials are often the elements of lowest proportional composition. As a result, exposure due to wear will predominate for those elements of relatively high proportional composition, while exposure due leaching may predominate for elements of relatively low proportional composition.
View Article and Find Full Text PDFBioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations.
View Article and Find Full Text PDFEnviron Toxicol Chem
February 2012
Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica.
View Article and Find Full Text PDFIndustrial and human activities in the Arctic regions may pose a risk to terrestrial Arctic ecosystem functions. One of the most common terrestrial toxicological end points, primary productivity, typically is assessed using a plant phytotoxicity test. Because of cryoturbation, a soil mixing process common in polar regions, we hypothesized that phytotoxicity test results in Arctic soils would be highly variable compared to other terrestrial ecosystems.
View Article and Find Full Text PDFSub-Antarctic islands have been subjected to petroleum hydrocarbon spills, yet no information is available regarding the toxicity of petroleum hydrocarbons to these subpolar soils. The purpose of the present study was to identify soil biogeochemical toxicity end points for petroleum hydrocarbon contamination in sub-Antarctic soil. Soil from Macquarie Island, a sub-Antarctic island south of Australia, was collected and exposed to 10 concentrations of Special Antarctic Blend (SAB) diesel fuel, ranging from 0 to 50,000 mg fuel/kg soil, for a 21-d period.
View Article and Find Full Text PDFSoil ingestion is an important exposure route by which immobile soil contaminants enter the human body. We assessed polycyclic aromatic hydrocarbon (PAH) release from a contaminated soil, containing 49 mg PAH kg(-1), using a SHIME (Simulator of the Human Intestinal Microbial Ecosystem) reactor comprising the stomach, duodenal, and colon compartments. Polycyclic aromatic hydrocarbon release was defined as that fraction remaining in the digest supernatant after centrifugation for 5 min at 1500 x g.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2003
During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected.
View Article and Find Full Text PDF