Publications by authors named "Steven Del Signore"

Article Synopsis
  • Extracellular vesicles (EVs) are tiny packages released by cells like neurons that can carry signals and help with diseases.
  • Researchers found that a special machinery called ESCRT helps in releasing these packages, but even without it, some signals from the packages still work.
  • The study suggests that EVs might mainly help clean up unwanted materials in the brain rather than just sending signals between cells.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from motor neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a part of the brain where signals are sent between nerve cells called the synapse, focusing on a nearby area called the periactive zone (PAZ).
  • They found that different proteins that help recycle materials after signals are sent are organized in specific ways within the PAZ, suggesting these areas have special jobs.
  • The research also showed that the way these recycling proteins are spread out is connected to how often signals are released in the synapse, helping us understand how nerve cells communicate better.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how actin assembly, necessary for processes like endocytosis at synaptic membranes, is tightly controlled by specific proteins to ensure effective membrane remodeling.
  • It explains that the endocytic proteins Nwk/FCHSD2, Dap160/intersectin, and WASp interact in a way that both relieves autoinhibition and encourages targeted actin assembly during synaptic activity.
  • Ultimately, the research highlights that these protein interactions not only prevent unwanted actin structures but also enhance synaptic endocytosis, indicating a dual role in regulating actin assembly in neurons.
View Article and Find Full Text PDF

Loss of the phosphoinositide 5-phosphatase OCRL causes accumulation of PtdIns(4,5)P on membranes and, ultimately, Lowe syndrome. In this issue, Mondin et al. (2019.

View Article and Find Full Text PDF

Despite the advancement of molecular imaging techniques, there is an unmet need for probes for direct imaging of membrane dynamics of live cells. Here we report a novel type of active (or enzyme responsive) probes to directly image membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas. Because lipid rafts enrich cholesterols and GPI-anchored enzymes (e.

View Article and Find Full Text PDF

Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide.

View Article and Find Full Text PDF

Contractile forces eliminate cell contacts in many morphogenetic processes. However, mechanisms that balance contractile forces to promote subtler remodeling remain unknown. To address this gap, we investigated remodeling of Drosophila eye lattice cells (LCs), which preserve cell contacts as they narrow to form the edges of a multicellular hexagonal lattice.

View Article and Find Full Text PDF

Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system.

View Article and Find Full Text PDF

For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables.

View Article and Find Full Text PDF

Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level.

View Article and Find Full Text PDF

The Drosophila wing imaginal disc is subdivided along the proximodistal axis into the distal pouch, the hinge, the surrounding pleura, and the notum. While the genetic pathways that specify the identity of each of these domains have been well studied, the mechanisms that coordinate the relative expansion of these domains are not well understood. Here we investigated the role of the stat92E signal transducer and activator of transcription in wing proximodistal development.

View Article and Find Full Text PDF

The growth and patterning of Drosophila wing and notum primordia depend on their subdivision into progressively smaller domains by secreted signals that emanate from localized sources termed organizers. While the mechanisms that organize the wing primordium have been studied extensively, those that organize the notum are incompletely understood. The genes odd-skipped (odd), drumstick (drm), sob, and bowl comprise the odd-skipped family of C(2)H(2) zinc finger genes, which has been implicated in notum growth and patterning.

View Article and Find Full Text PDF

Release of mitochondrial cytochrome c resulting in downstream activation of cell death pathways has been suggested to play a role in neurologic diseases featuring cell death. However, the specific biologic importance of cytochrome c release has not been demonstrated in Huntington's disease (HD). To evaluate the role of cytochrome c release, we screened a drug library to identify new inhibitors of cytochrome c release from mitochondria.

View Article and Find Full Text PDF

Recent evidence suggests that transcriptional dysregulation may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The histone deacetylase inhibitor, sodium phenylbutyrate (NaPB), is neuroprotective and corrects aberrant gene transcription in ALS mice and has recently been shown to be safe and tolerable in ALS patients while improving hypoacetylation. Since many patients are already on riluzole, it is important to ensure that any proposed therapy does not result in negative synergy with riluzole.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no current therapy preventing cumulative neuronal loss. There is substantial evidence that mitochondrial dysfunction, oxidative stress, and associated caspase activity underlie the neurodegeneration observed. One potential drug therapy is the potent free radical scavenger and antioxidant cystamine, which has demonstrated significant clinical potential in models of neurodegenerative disorders and human neurological disease.

View Article and Find Full Text PDF

Transcriptional dysregulation and aberrant chromatin remodeling are central features in the pathology of Huntington's disease (HD). In order to more fully characterize these pathogenic events, an assessment of histone profiles and associated gene changes were performed in transgenic N171-82Q (82Q) and R6/2 HD mice. Analyses revealed significant chromatin modification, resulting in reduced histone acetylation with concomitant increased histone methylation, consistent with findings observed in HD patients.

View Article and Find Full Text PDF

Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx).

View Article and Find Full Text PDF

There is substantial evidence that a bioenergetic defect may play a role in the pathogenesis of Huntington's Disease (HD). A potential therapy for remediating defective energy metabolism is the mitochondrial cofactor, coenzyme Q10 (CoQ10). We have reported that CoQ10 is neuroprotective in the R6/2 transgenic mouse model of HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder of genetic origin with no known therapeutic intervention that can slow or halt disease progression. Transgenic murine models of HD have significantly improved the ability to assess potential therapeutic strategies. The R6/2 murine model of HD, which recapitulates many aspects of human HD, has been used extensively in pre-clinical HD therapeutic treatment trials.

View Article and Find Full Text PDF

Genetic murine models play an important role in the study of human neurological disorders by providing accurate and experimentally accessible systems to study pathogenesis and to test potential therapeutic treatments. One of the most widely employed models of Huntington's disease (HD) is the R6/2 transgenic mouse. To characterize this model further, we have performed behavioral and neuropathological analyses that provide a foundation for the use of R6/2 mice in preclinical therapeutic trials.

View Article and Find Full Text PDF