Investigating the habitability of ocean worlds is a priority of current and future NASA missions. The mission will conduct approximately 50 flybys of Jupiter's moon Europa, returning a detailed portrait of its interior from the synthesis of data from its instrument suite. The magnetometer on board has the capability of decoupling Europa's induced magnetic field to high precision, and when these data are inverted, the electrical conductivity profile from the electrically conducting subsurface salty ocean may be constrained.
View Article and Find Full Text PDFThe habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission.
View Article and Find Full Text PDFRobust thermodynamic data are essential for the development of geodynamic and geochemical models of ocean worlds. The water-ammonia system is of interest in the study of ocean worlds due to its purported abundance in the outer solar system, geological implications, and potential importance for origins of life. In support of developing new equations of state, we conducted 1 bar specific heat capacity measurements () using a differential scanning calorimeter (DSC) at low temperatures (184-314 K) and low mass fractions of ammonia (5.
View Article and Find Full Text PDFThe Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation.
View Article and Find Full Text PDFSodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17HO (SC8.
View Article and Find Full Text PDFEuropa likely contains an iron-rich metal core. For it to have formed, temperatures within Europa reached 1250 K. Going up to that temperature, accreted chondritic minerals - for example, carbonates and phyllosilicates - would partially devolatilize.
View Article and Find Full Text PDFrevealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice.
View Article and Find Full Text PDFMagnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity.
View Article and Find Full Text PDFLocating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network.
View Article and Find Full Text PDFThe molecules feeding life's emergence are thought to have been provided through the hydrothermal interactions of convecting carbonic ocean waters with minerals comprising the early Hadean oceanic crust. Few laboratory experiments have simulated ancient hydrothermal conditions to test this conjecture. We used the JPL hydrothermal flow reactor to investigate CO reduction in simulated ancient alkaline convective systems over 3 days (T = 120°C, = 100 bar, pH = 11).
View Article and Find Full Text PDFThe icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans.
View Article and Find Full Text PDFBrinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials.
View Article and Find Full Text PDFIn this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to "identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find.
View Article and Find Full Text PDFIce-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could reveal the transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts.
View Article and Find Full Text PDF