Mycelial materials are an emerging, natural material made from filamentous fungi that have the potential to replace unsustainable materials used in numerous commercial applications (e.g., packaging, textiles, construction).
View Article and Find Full Text PDFUnlabelled: This study investigates a previously unreported stress signal transduced as crosstalk between the cell wall integrity (CWI) pathway and the septation initiation network (SIN). Echinocandins, which target cell wall synthesis, are widely used to treat mycoses. Their efficacy, however, is species specific.
View Article and Find Full Text PDFBlack yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood.
View Article and Find Full Text PDFRapid evolution of fungal pathogens poses a serious threat to medicine and agriculture. The mutation rate determines the pace of evolution of a fungal pathogen. Hypermutator fungal strains have an elevated mutation rate owing to certain defects such as those in the DNA mismatch repair system.
View Article and Find Full Text PDFSeptation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (Δ, Δ, Δ, and Δ) and six antifungal compounds.
View Article and Find Full Text PDFFungal cell wall receptors relay messages about the state of the cell wall to the nucleus through the Cell Wall Integrity Signaling (CWIS) pathway. The ultimate role of the CWIS pathway is to coordinate repair of cell wall damage and to restore normal hyphal growth. Echinocandins such as micafungin represent a class of antifungals that trigger cell wall damage by affecting synthesis of β-glucans.
View Article and Find Full Text PDFFungi critically impact the health and function of global ecosystems and economies. In Canada, fungal researchers often work within silos defined by subdiscipline and institutional type, complicating the collaborations necessary to understand the impacts fungi have on the environment, economy, and plant and animal health. Here, we announce the establishment of the Canadian Fungal Research Network (CanFunNet, https://fungalresearch.
View Article and Find Full Text PDFThe fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a β-glucan synthase inhibitor (micafungin) was added to a growing shake-flask culture.
View Article and Find Full Text PDFCytokinesis, as the final step of cell division, plays an important role in fungal growth and proliferation. In the filamentous fungus , defective cytokinesis is able to induce abnormal multinuclear or nonnucleated cells and then result in reduced hyphal growth and abolished sporulation. Previous studies have reported that a conserved contractile actin ring (CAR) protein complex and the septation initiation network (SIN) signaling kinase cascade are required for cytokinesis and septation; however, little is known about the role(s) of scaffold proteins involved in these two important cellular processes.
View Article and Find Full Text PDFThe polyextremotolerant black yeast Exophiala dermatitidis is a tractable model system for investigation of adaptations that support growth under extreme conditions. Foremost among these adaptations are melanogenesis and carotenogenesis. A particularly important question is their metabolic production cost.
View Article and Find Full Text PDFIn filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a deletion strain (Δ) to identify proteins for which phosphorylation is dependent (either directly or indirectly) on PKA.
View Article and Find Full Text PDFIn filamentous fungi, the formation of hyphal branches is a critical process that supports the ability of mycelia to radiate across and colonize growth substrates. Branching can occur at hyphal tips (apical branching) or from subapical hyphal compartments (lateral branching). The primary focus of this review is on lateral branching.
View Article and Find Full Text PDFThe protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth.
View Article and Find Full Text PDFFilamentous fungi are widely used in the production of a variety of industrially relevant enzymes and proteins as they have the unique ability to secrete tremendous amounts of proteins. However, the secretory pathways in filamentous fungi are not completely understood. Here, we investigated the role of a mutation in the POlarity Defective (podB) gene on growth, protein secretion, and cell wall organization in Aspergillus nidulans using a temperature sensitive (Ts) mutant.
View Article and Find Full Text PDFFilamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues.
View Article and Find Full Text PDFOne of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling.
View Article and Find Full Text PDFProtein phosphorylation is a major means of regulation for cellular processes, and is important in cell signaling, growth, and cell proliferation. To study phosphorylated proteins, high throughput phosphoproteomic technologies, such as reverse phase protein array, phospho-specific flow cytometry, and mass spectrometry (MS) based technologies, have been developed. Among them, mass spectrometry has become the primary tool employed for the identification of phosphoproteins and phosphosites in fungi, leading to an improved understanding of a number of signaling pathways.
View Article and Find Full Text PDFThe Rho-related family of GTPases are pivotal regulators of morphogenetic processes in diverse eukaryotic organisms. In the filamentous fungi two related members of this family, Cdc42 and Rac1, perform particularly important roles in the establishment and maintenance of hyphal polarity. The activity of these GTPases is tightly controlled by two sets of regulators: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs).
View Article and Find Full Text PDFWe describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified.
View Article and Find Full Text PDFVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity.
View Article and Find Full Text PDFThe survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum.
View Article and Find Full Text PDFThe contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the wheat pathogen F. graminearum.
View Article and Find Full Text PDFThe Golgi apparatus performs crucial functions in the sorting and processing of proteins destined for secretion from eukaryotic cells. In filamentous fungi, organization of the Golgi apparatus reflects the unique challenges brought about by the highly polarized nature of hyphal growth. Recent results show that Golgi compartments are spatially segregated within hyphal tip cells in a manner that depends upon the integrity of the cytoskeleton.
View Article and Find Full Text PDFTight control of the intracellular uracil level is believed to be important to reduce the occurrence of uracil incorporation into DNA. The pyrG gene of Aspergillus nidulans encodes orotidine 5'-phosphate decarboxylase, which catalyzes the conversion of orotidine monophosphate (OMP) to uridine monophosphate (UMP). In this study, we found that pyrG is critical for maintaining uracil at a low concentration in A.
View Article and Find Full Text PDFConidiophores are reproductive structures that enable filamentous fungi to produce and disseminate large numbers of asexual spores. The diversity in conidiophore morphology is sufficiently large to serve as a basis for fungal systematics. Aspergillus and Penicillium species are members of the family Trichocomaceae that form conidiophores with characteristic architecture.
View Article and Find Full Text PDF