A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a useful technique for probing analyte-noble metal interactions and determining thermodynamic properties such as their surface reaction equilibrium constants and binding energies. In this study, we measure the binding equilibrium constants and Gibbs free energy of binding for a series of nitrogen-containing aromatic molecules adsorbed on Klarite substrates. A dual Langmuir dependence of the SERS intensity on concentration was observed for the six species studied, indicating the presence of at least two different binding energies.
View Article and Find Full Text PDFIn 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues.
View Article and Find Full Text PDFResonance Raman cross sections of common explosives have been measured by use of excitation wavelengths in the deep-UV from 229 to 262 nm. These measurements were performed both in solution and in the native solid state for comparison. While measurements of UV Raman cross sections in solution with an internal standard are straightforward and commonly found in the literature, measurements on the solid phase are rare.
View Article and Find Full Text PDFWe present the results of a three-year collaboration between the U.S. Army Edgewood Chemical Biological Center and the U.
View Article and Find Full Text PDFRaman cross-sections of explosives in solution and in the solid state have been measured using visible and near-infrared excitation via secondary calibration. These measurements are valuable for both fundamental scientific purposes and applications in the standoff detection of explosives. The explosive compounds RDX, HMX, TNT, 2,4-DNT, 2,6-DNT, and ammonium nitrate were measured using discrete excitation wavelengths ranging from 532 nm to 785 nm.
View Article and Find Full Text PDFThe United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data.
View Article and Find Full Text PDFRaman chemical imaging microspectroscopy is evaluated as a technology for waterborne pathogen and bioaerosol detection. Raman imaging produces a three-dimensional data cube consisting of a Raman spectrum at every pixel in a microscope field of view. Binary and ternary mixtures including combinations of polystyrene beads, gram-positive Bacillus anthracis, B.
View Article and Find Full Text PDFUltraviolet (UV) Raman spectroscopy is being applied to the detection of chemical agent contamination of natural and man-made surfaces. In support of these efforts, we have measured the UV Raman signatures of the G-series nerve agents GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), and the agent simulant diisopropyl methylphosphonate (DIMP) at 248 nm and 262 nm, as well as taking their UV Raman and UV absorption cross-sections. Of these chemicals, only GA exhibits any significant pre-resonance enhancement.
View Article and Find Full Text PDFHighly active and stable substrates for surface-enhanced Raman scattering (SERS) can be fabricated by using colloidal crystals to template gold nanoparticles into structured porous films. The structure-dependent performance of these SERS substrates was systematically characterized with cyanide in continuous flow microfluidic chambers. A matrix of experiments was designed to isolate the SERS contributions arising from nano- and microscale porosity, long-range ordering of the micropores, and the thickness of the nanoparticle layer.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2005
We present a detailed analysis of the structure and infrared spectra of divinyl sulfoxide. The vibrational frequencies of the divinyl sulfoxide molecule were analyzed using standard quantum chemical techniques. Frequencies were calculated at the MP2 and DFT levels of theory using the standard 6-311G* basis set.
View Article and Find Full Text PDF