Publications by authors named "Steven D Christensen"

Wear and damage of ultrahigh molecular weight polyethylene (UHMWPE) tibial inserts used in total knee arthroplasty are accelerated by oxidation. Radiation crosslinking reduces wear but produces residual free radicals adversely affecting stability. One alternative to stabilize radiation-crosslinked UHMWPE is to infuse the material with vitamin E (vit E).

View Article and Find Full Text PDF

Wear and delamination of conventional ultrahigh-molecular-weight polyethylene (UHMWPE) components used in total knee arthroplasty can compromise long-term performance. Radiation cross-linking and melt-annealing reduced wear and increased delamination resistance of UHMWPE. An alternative material is the alpha-tocopherol-stabilized irradiated UHMWPE (alphaTPE), with improved mechanical and fatigue properties vs irradiated and melted UHMWPE.

View Article and Find Full Text PDF

Our hypothesis was that cross-linked, ultrahigh-molecular weight polyethylene (UHMWPE) stabilized with vitamin E (alpha-tocopherol) would be wear-resistant and fatigue-resistant. Acetabular liners were radiation cross-linked, doped with vitamin E, and gamma-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body particles, respectively, a 4-fold to 10-fold decrease from that of conventional UHMWPE.

View Article and Find Full Text PDF

Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear.

View Article and Find Full Text PDF