Three-finger toxins (3FTXs) are a functionally diverse family of toxins, apparently unique to venoms of caenophidian snakes. Although the ancestral function of 3FTXs is antagonism of nicotinic acetylcholine receptors, redundancy conferred by the accumulation of duplicate genes has facilitated extensive neofunctionalization, such that derived members of the family interact with a range of targets. 3FTXs are members of the LY6/UPAR family, but their non-toxin ancestor remains unknown.
View Article and Find Full Text PDFIn this study, we report the first complete mitochondrial genome sequence of the Aquatic Coralsnake . The mitochondrial genome lengthis 17,375 bp, comprising 13 protein-coding genes, 2 rRNA (12S and 16S) and 22 tRNA, as well as two typical control regions. Phylogenetic analysis based upon 13 protein-coding genes showed clusters based on terrestrial and marine species.
View Article and Find Full Text PDFThroughout most of the 20th century, the toxinological literature consisted largely of pharmacological and functional characterizations of crude venoms and venom constituents, often constituents that could not be identified unambiguously [...
View Article and Find Full Text PDFSmall metabolites and peptides in 17 snake venoms (Elapidae, Viperinae, and Crotalinae), were quantified using liquid chromatography-mass spectrometry. Each venom contains >900 metabolites and peptides. Many small organic compounds are present at levels that are probably significant in prey envenomation, given that their known pharmacologies are consistent with snake envenomation strategies.
View Article and Find Full Text PDFVenoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using snake venoms, which consist of rapidly evolving protein formulations.
View Article and Find Full Text PDFVenom gland transcriptomes and proteomes of six taxa (, , , , , and ) were investigated, providing the most comprehensive, quantitative data on venom composition to date, and more than tripling the number of venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts.
View Article and Find Full Text PDFWhile decades of research have focused on snake venom proteins, far less attention has been paid to small organic venom constituents. Using mostly pooled samples, we surveyed 31 venoms (six elapid, six viperid, and 19 crotalid) for spermine, spermidine, putrescine, and cadaverine. Most venoms contained all four polyamines, although some in essentially trace quantities.
View Article and Find Full Text PDFToxins (Basel)
June 2015
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied.
View Article and Find Full Text PDFBackground: Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
June 2008
The present study examined the taxonomic distribution of dipeptidyl peptidase IV (DPP IV) activity in venoms of 59 ophidian taxa, representing seven subfamilies of the Families Elapidae and Viperidae. DPP IV activity is extremely variable at all taxonomic levels. It ranged from essentially none in laticaudine, hydrophiine, and some bungarine and elapine venoms, to 10.
View Article and Find Full Text PDFVenoms of Heloderma horridum and Heloderma suspectum were analyzed for the possible presence of purine and pyrimidine nucleosides. Adenosine, cytidine, guanosine, hypoxanthine, inosine, and uridine were found in mug quantities. These amounts are much smaller than those seen in many elapid or viperine venoms, but greater and more varied than those found in crotaline venoms.
View Article and Find Full Text PDFSome glycoproteins bind so tightly to concanavalin A Sepharose that common desorption techniques are ineffective, so a systematic exploration of factors affecting desorption of cottonmouth venom glycoproteins was undertaken. Glycoprotein desorption is greatly improved by introducing up to four pauses of 5-10 min duration into the elution step. Eluent concentrations above 250 mM methylglucoside or 500 mM methyl-mannoside reduced glycoprotein desorption.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
October 2006
In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2005
The nucleoside content of 32 elapid and viperid venoms was examined. Free purines, principally adenosine (ADO), inosine (INO), and guanosine (GUA), comprised as much as 8.7% of the solid components of some venoms.
View Article and Find Full Text PDFPrep Biochem Biotechnol
November 2004
In a chromatographic method modification intended to preserve protease activity in Bothrops erythromelas venom, 2 mM CaCl2 was added to the gel filtration buffer [50mM Tris/HCl/150mM NaCl (pH 8.0)], in lieu of an equimolar portion of NaCl. This minor compositional change induced significant differences in the venom elution profile on Superdex 200.
View Article and Find Full Text PDFSnake envenomation employs three well integrated strategies: prey immobilization via hypotension, prey immobilization via paralysis, and prey digestion. Purines (adenosine, guanosine and inosine) evidently play a central role in the envenomation strategies of most advanced snakes. Purines constitute the perfect multifunctional toxins, participating simultaneously in all three envenomation strategies.
View Article and Find Full Text PDFFour trypsin inhibitor homologs, the first known from Dendroaspis angusticeps venom, were characterized using a combination of gel filtration, cation exchange, reverse-phase liquid chromatography, Edman degradation and mass spectrometry. The four toxins comprise two 57 residue and two 59 residue isoforms. The long toxins possess a Lys-Gln N-terminal extension lacked by the short toxins.
View Article and Find Full Text PDF