Publications by authors named "Steven Coultrap"

Article Synopsis
  • Learning and memory involve long-term potentiation (LTP) of synaptic strength, which requires CaMKII primarily for its structural functions.
  • CaMKII binds to the NMDA receptor subunit GluN2B to generate Ca-independent activity that is crucial for an intermediary phase of LTP after initial induction but not for long-term maintenance.
  • This study reveals that while the enzymatic activity of CaMKII isn't needed for the quick start of LTP, it plays a role later on, indicating a clear timeline for different phases of LTP expression.
View Article and Find Full Text PDF

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca/calmodulin-dependent protein kinase II (CaMKII). However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B.

View Article and Find Full Text PDF

CaMKII has molecular memory functions because transient calcium ion stimuli can induce long-lasting increases in its synaptic localization and calcium ion-independent (autonomous) activity, thereby leaving memory traces of calcium ion stimuli beyond their duration. The synaptic effects of two mechanisms that induce CaMKII autonomy are well studied: autophosphorylation at threonine-286 and binding to GluN2B. Here, we examined the neuronal functions of additional autonomy mechanisms: nitrosylation and oxidation of the CaMKII regulatory domain.

View Article and Find Full Text PDF

Aβ bears homology to the CaMKII regulatory domain, and peptides derived from this domain can bind and disrupt the CaMKII holoenzyme, suggesting that Aβ could have a similar effect. Notably, Aβ impairs the synaptic CaMKII accumulation that is mediated by GluN2B binding, which requires CaMKII assembly into holoenzymes. Furthermore, this Aβ-induced impairment is prevented by CaMKII inhibitors that should also inhibit the putative direct Aβ binding.

View Article and Find Full Text PDF

Neuronal CaMKII holoenzymes (α and β isoforms) enable molecular signal computation underlying learning and memory but also mediate excitotoxic neuronal death. Here, we provide a comparative analysis of these signaling devices, using single-particle electron microscopy (EM) in combination with biochemical and live-cell imaging studies. In the basal state, both isoforms assemble mainly as 12-mers (but also 14-mers and even 16-mers for the β isoform).

View Article and Find Full Text PDF

Binding of two different CaM kinases, CaMKII and DAPK1, to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B near S1303 has been implicated in excitotoxic/ischemic neuronal cell death. The GluN2B mutation (L1298A, R1300Q) is neuroprotective but abolishes only CaMKII but not DAPK1 binding. However, both kinases can additionally phosphorylate GluN2B S1303.

View Article and Find Full Text PDF

The Ca/Calmodulin-dependent protein kinase II (CaMKII) is a central regulator of synaptic plasticity and has been implicated in various neurological conditions, including schizophrenia. Here, we characterize six different CaMKIIα variants found in patients with schizophrenia. Only R396stop disrupted the 12-meric holoenzyme structure, GluN2B binding, and synaptic localization.

View Article and Find Full Text PDF

Higher brain functions are thought to require synaptic frequency decoding that can lead to long-term potentiation (LTP) or depression (LTD). We show that the LTP versus LTD decision is determined by complex cross-regulation of T286 and T305/306 autophosphorylation within the 12meric CaMKII holoenzyme, which enabled molecular computation of stimulus frequency, amplitude, and duration. Both LTP and LTD require T286 phosphorylation, but T305/306 phosphorylation selectively promoted LTD.

View Article and Find Full Text PDF
Article Synopsis
  • DAPK1 and CaMKII both bind to GluN2B, which is crucial for mediating ischemic cell death, but their binding is mutually exclusive.
  • Mutating a specific region on GluN2B (L1298A/R1300Q) protects neurons from death after cardiac arrest by preventing CaMKII binding without affecting DAPK1.
  • During ischemia, CaMKII accumulates at synapses and is essential for neuronal death, while DAPK1 associates with extra-synaptic GluN2B, indicating different roles for these proteins in cell death mechanisms.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is emerging as a synaptopathology driven by metaplasticity. Indeed, reminiscent of metaplasticity, oligomeric forms of the amyloid-β peptide (oAβ) prevent induction of long-term potentiation (LTP) via the prior activation of GluN2B-containing NMDA receptors (NMDARs). However, the downstream Ca-dependent signaling molecules that mediate aberrant metaplasticity are unknown.

View Article and Find Full Text PDF

Four CaMKII isoforms are encoded by distinct genes, and alternative splicing within the variable linker-region generates additional diversity. The α and β isoforms are largely brain-specific, where they mediate synaptic functions underlying learning, memory and cognition. Here, we determined the α and β splice-variant distribution among different mouse brain regions.

View Article and Find Full Text PDF

Both long-term potentiation (LTP) and depression (LTD) of excitatory synapse strength require the Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII) and its autonomous activity generated by Thr-286 autophosphorylation. Additionally, LTP and LTD are correlated with dendritic spine enlargement and shrinkage that are accompanied by the synaptic accumulation or removal, respectively, of the AMPA-receptor regulatory scaffold protein A-kinase anchoring protein (AKAP) 79/150. We show here that the spine shrinkage associated with LTD indeed requires synaptic AKAP79/150 removal, which in turn requires CaMKII activity.

View Article and Find Full Text PDF

The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory, and cognition.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15-35 nm in diameter.

View Article and Find Full Text PDF

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) mediates physiological and pathological functions by its Ca(2+)-independent autonomous activity. Two novel mechanisms for generating CaMKII autonomy include oxidation and S-nitrosylation, the latter requiring both Cys280 and Cys289 amino acid residues in the brain-specific isoform CaMKIIα. Even though the other CaMKII isoforms have a different amino acid in the position homologous to Cys280, we show here that nitric oxide (NO)-signaling generated autonomy also for the CaMKIIβ isoform.

View Article and Find Full Text PDF

Both signaling by nitric oxide (NO) and by the Ca(2+)/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca(2+)-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death.

View Article and Find Full Text PDF

A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation.

View Article and Find Full Text PDF

Binding of the Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B controls long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. Regulation of this interaction is well-studied biochemically, but not under conditions that mimic the macromolecular crowding found within cells. Notably, previous molecular crowding experiments with lysozyme indicated an effect on the CaMKII holoenzyme conformation.

View Article and Find Full Text PDF

Excitotoxic insults such as cerebral ischemia are thought to enhance neuronal autophagy, which is then thought to promote neuronal cell death. Excitotoxic insults indeed increase autophagy markers. Notably, however, autophagy markers can be increased either by autophagy induction (as this enhances their production) or by late-stage autophagy inhibition (as this prevents their degradation during autophagic flux).

View Article and Find Full Text PDF

Traditionally, hippocampal long-term potentiation (LTP) of synaptic strength requires Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and other kinases, whereas long-term depression (LTD) requires phosphatases. Here, we found that LTD also requires CaMKII and its phospho-T286-induced "autonomous" (Ca(2+)-independent) activity. However, whereas LTP is known to induce phosphorylation of the AMPA-type glutamate receptor (AMPAR) subunit GluA1 at S831, LTD instead induced CaMKII-mediated phosphorylation at S567, a site known to reduce synaptic GluA1 localization.

View Article and Find Full Text PDF

Binding of the Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor subunit GluN2B is an important control mechanism for the regulation of synaptic strength. CaMKII binding to GluN2B and CaMKII translocation to synapses are induced by an initial Ca²⁺/CaM stimulus, which also activates the kinase. Indeed, several mechanistically different CaMKII inhibitors [tatCN21 and KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide)] and inactivating mutations (K42M, A302R, and T305/T306D) impair this interaction, suggesting that it requires CaMKII enzymatic activity.

View Article and Find Full Text PDF

The Ca(2+)/Calmodulin(CaM)-dependent protein kinase II (CaMKII) is activated by Ca(2+)/CaM, but becomes partially autonomous (Ca(2+)-independent) upon autophosphorylation at T286. This hallmark feature of CaMKII regulation provides a form of molecular memory and is indeed important in long-term potentiation (LTP) of excitatory synapse strength and memory formation. However, emerging evidence supports a direct role in information processing, while storage of synaptic information may instead be mediated by regulated interaction of CaMKII with the NMDA receptor (NMDAR) complex.

View Article and Find Full Text PDF

Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage.

View Article and Find Full Text PDF

Background: Autophosphorylation of the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) at T286 generates partially Ca(2+)/CaM-independent "autonomous" activity, which is thought to be required for long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. A requirement for T286 autophosphorylation also for efficient Ca(2+)/CaM-stimulated CaMKII activity has been described, but remains controversial.

Methodology/principal Findings: In order to determine the contribution of T286 autophosphorylation to Ca(2+)/CaM-stimulated CaMKII activity, the activity of CaMKII wild type and its phosphorylation-incompetent T286A mutant was compared.

View Article and Find Full Text PDF